
© Peter R. Egli 2015
1/21

Rev. 3.40

Transport Protocols indigoo.com

Peter R. Egli
INDIGOO.COM

INTRODUCTION TO PRINCIPLES OF
TRANSPORT PROTOCOLS FOR TCP/IP NETWORKS

TRANSPORT
PROTOCOLS



© Peter R. Egli 2015
2/21

Rev. 3.40

Transport Protocols indigoo.com

Contents
1. Transport layer functions

2. Elements of transport protocols (addressing)

3. Elements of transport protocols (connection establishment)

4. Elements of transport protocols (connection release)

5. Elements of transport protocols (flow control and buffering)

6. Elements of transport protocols (multiplexing)

7. Elements of transport protocols (crash recovery)

8. Elements of transport protocols (programming API)

9. Transport layer characteristics



© Peter R. Egli 2015
3/21

Rev. 3.40

Transport Protocols indigoo.com

1. Transport layer functions (1/3)
The transport layer is the interface between the network and application („network API“).

The transport layer provides 2 main functions to the application:

1. Data transport service (transport data to another remote or local application)

2. Some level of QoS (Quality of Service)

Data transport

service

No QoS (=best-effort service)

Transport Layer provides some 

kind of QoS to upper layers.

OSI Layer 1

OSI Layer 2

OSI Layer 3

OSI Layer 4

OSI Layer > 4

Physical layer

Data link layer

Network layer

Transport layer

Upper layers

(application layer)

QoS: Quality of Service

OSI: Open SystemS Interconnection



© Peter R. Egli 2015
4/21

Rev. 3.40

Transport Protocols indigoo.com

1. Transport layer functions (2/3)
QoS:

IP and lower layers do not provide any QoS. The service is best-effort (send packets, but do

not provide any delivery guarantee). It is up to the upper layers to deal with network problems.

The transport layer may hide network imperfections (problems on the network) from 

the application.

Possible problems on the network are (incomplete list):

Packet loss:

Packet loss typically occurs in congested IP routers (too many packets have to be forwarded

to the same outbound interface at the same time).

Packet duplicates:

Packet duplicates may occur due to routing loops or retransmissions due to a slow network.

Out of order packets:

Due to different transmission paths one IP packet may get ahead of another IP packet.

Bit errors:

Bit errors may occur due to various electromagnetic interferences. Bit errors are typically

relatively high on wireless links.

Delay of packets:

Packets get delayed in the network due to buffering, transmission delay etc.

Different transport protocols provide different levels of QoS (from none to full QoS).



© Peter R. Egli 2015
5/21

Rev. 3.40

Transport Protocols indigoo.com

1. Transport layer functions (3/3)
Possible QoS (Quality of Service) characteristics or functions of the transport protocol:

Connection establishment delay:

How long does it take to establish a transport connection?

Connection establishment failure probability:

How often does a connection establishment fail?

In-order delivery:

Does the transport protocol take care of packet ordering?

Throughput:

Does the transport protocol optimize throughput?

Transit delay:

Does the transport protocol minimize delay, i.e. send packets as quickly as possible?

Error ratio:

Does the transport protocol detect errors or even correct errors?

Priority:

Does the transport layer provide a priority mechanism (send high priority packets first)?

Resilience:

Do transport connections survive a system crash (persistence of connection)?

Protection:

Does the transport protocol provide protection against eavesdropping, wiretapping etc.?



© Peter R. Egli 2015
6/21

Rev. 3.40

Transport Protocols indigoo.com

2. Elements of transport protocols (1/14)
Addressing:

A TSAP (Transport Service Access Point) is the access point to the transport service for an 

application. A TSAP contains a port number as transport address.

TSAPs provide multiplexing / demultiplexing between different applications.

Likewise the NSAP (Network Service Access Point) is the access point to the network service

for the transport layer. An NSAP contains an IP address, i.e. the address of a hop / node in 

the network.

App Srv Srv
Application layer

Transport layer

Network layer

Data link layer

Physical layer

Transport

connection

TSAP with

port=1208

NSAP NSAP

TSAP with 

port=1522

Server

processes
Application 

process

TSAP with 

port=1836



© Peter R. Egli 2015
7/21

Rev. 3.40

Transport Protocols indigoo.com

3. Elements of transport protocols (2/14)
Connection establishment (1/5):

Prior to exchanging data a client and server must establish a connection

(like a telephone connection).

On some architectures (Unix) a single server acts as a proxy and spawns the actual 

server process that provides the service (“xinetd” daemon).

App PS

Host 1 Host 2

App PS

Host 1 Host 2

Srv

TSAPs

1. The application connects to the

process server’s (PS) TSAP.

2. The process server launches the

respective application service (Srv)

and passes it the connection (TSAP).



© Peter R. Egli 2015
8/21

Rev. 3.40

Transport Protocols indigoo.com

3. Elements of transport protocols (3/14)
Connection establishment (2/5):

Duplicate packet problem:

A network can duplicate packets. E.g. on a very slow network 

this happens when every packet is retransmitted once.

Proposed Solution 1:

The transport layers use a session / connection identifier.

Each host maintains a table with used session identifiers.

Duplicate packets can be detected and discarded.

But:

Possibly large tables.

Difficult and slow to manage.

Tables will not survive a host crash / reboot.

Host 1 Host 2



© Peter R. Egli 2015
9/21

Rev. 3.40

Transport Protocols indigoo.com

3. Elements of transport protocols (4/14)
Connection establishment (3/5):

Proposed Solution 2 (duplicate packet problem):

A. Limit the lifetime (T) of packets in network through:

* Hop counter (TTL)

* Restricted subnet design

* Timestamp each packet (each host is required to have a clock that survives a crash).

B. Make sure that time T passes after a packet with sequence number x is sent (forbidden 

regions). 

Duplicate packets can be detected and discarded.

But:

A real time clock (RTC) is required 

that survives system reboots 

(needs special hardware).

Forbidden regions are difficult 

to avoid.

Source: http://authors.phptr.com/tanenbaumcn4/



© Peter R. Egli 2015
10/21

Rev. 3.40

Transport Protocols indigoo.com

3. Elements of transport protocols (5/14)
Connection establishment (4/5):

Proposed Solution 3 (duplicate packet problem):

A. Put a sequence number (~timestamp) into each packet.

B. Client and server acknowledge each others 

sequence numbers (synchronize each others 

sequence numbers).

Fool-proof.

Simple.

No special requirements for sequence number 

(may be derived from system tick).

The 4-way handshake may be collapsed into a 3-way

handshake.

Host 1 Host 2

4-way

handshake

3-way

handshake

Seq-#: Sequence number

Ack-#: Acknowledge number

ISN: Initial Sequence Number

CR: Connect Request

ACK: Acknowledge (packet with Ack-#)



© Peter R. Egli 2015
11/21

Rev. 3.40

Transport Protocols indigoo.com

3. Elements of transport protocols (6/14)
Connection establishment (5/5):

Proposed Solution 3 (duplicate packet problem):

The solution is foolproof. Duplicate packets can always be detected.

Host 1 Host 2 Host 1 Host 2 Host 1 Host 2

Old duplicate packets

Normal operation: Old connection request 

appearing out of the blue:

Duplicate connection request

and duplicate Ack:

REJECT: Connection reject

DATA: Packet with user data



© Peter R. Egli 2015
12/21

Rev. 3.40

Transport Protocols indigoo.com

4. Elements of transport protocols (7/14)
Connection release (1/3):

Problem:

Asymmetric release (only 1 peer closes the connection)

is abrupt and may cause data loss.

Proposed solution:

Either side will disconnect its (outgoing) direction of the

duplex connection (possibly collapsed into 3-way handshake).

No data loss.

But:

Not fool-proof (DR packet may get lost

and thus connection not closed, see next slide).

Host 1 Host 2

No data delivered after

a disconnect request

Host 1 Host 2

DR: Disconnect Request



© Peter R. Egli 2015
13/21

Rev. 3.40

Transport Protocols indigoo.com

4. Elements of transport protocols (8/14)
Connection release (2/2):

Problem:

No protocol/procedure exists that can 

guarantee the proper connection 

termination in case of packet loss 

(“Two-army problem”, 

“Army-in-the-middle-problem”).

Army-in-the-middle situation:
The blue army has 4 troops (2 on either side of valley) while the white army has 3 troops. If both blue armies charge at the 

same time they can vanquish the white army. If only one of the blue armies charges it will succumb (3 white troops 

against 2 blue troops). This means: the blue armies have to synchronize their attack. 

But in order to synchronize they need to send a messenger through the valley; of course the messenger can get 

caught by the white army (‘lost packet’).

Approach #1:

The blue army #1 sends a messenger to tell blue army #2 to attack @ 1400.

Problem:

The blue army #1 does not know if the messenger managed to convey message or if he was caught. 

Thus blue army #1 will not attack.

Approach #2:

The blue army #2 sends back a messenger to acknowledge to blue army #1 that it got the message.

Problem:

The blue army #2 does not know if acknowledge-messenger reached blue army #1. Thus blue army #2 will not attack.

 This play can be continued ad infinitum. No algorithm exists to make the acknowledgment procedure fool-proof.

Source: http://authors.phptr.com/tanenbaumcn4/



© Peter R. Egli 2015
14/21

Rev. 3.40

Transport Protocols indigoo.com

4. Elements of transport protocols (9/14)
Connection release (3/3):

Proposed solution:

Start a timer when sending the DR. When it times out release the connection anyway.

Host 1 Host 2

Normal case of 3-way handshake:

Send DR

+ start timer

Release

connection

Send Ack

Send DR

+ start timer

Release

connection

Host 1 Host 2

Final Ack lost:

Send DR

+ start timer

Release

connection

Send Ack

Send DR

+ start timer

Timeout:

Release

connection

Host 1 Host 2

Response lost:

Send DR

+ start timer

Release

connection,

Send Ack

Send DR

+ start timer

Release

connection

Timeout:

Send DR

+ start timer
Send DR

+ start timer

Host 1 Host 2

Response and subsequent DR lost:

Send DR

+ start timer
Send DR

+ start timer

Timeout:

Release

connection

Timeout:

Send DR

+ start timer

N timeouts:

Release

connection



© Peter R. Egli 2015
15/21

Rev. 3.40

Transport Protocols indigoo.com

5. Elements of transport protocols (10/14)
Flow control and buffering:

Problem:

The sender process may send at much higher speed than the receiver process can handle 

the data thus causing overflow (= packet loss).

Proposed solution:

The receiver buffers incoming packets.

A sliding window mechanism provides a “backpressure” to the sender process when the buffer 

is imminent to overflow (or better prevents the receive buffer from becoming full in 

the first place). The receiver process continuously tells the sending process how much

empty space is left in its receive buffer. The sender process never sends more data than can be 

accommodated in the receive buffer.

More details see TCP flow control.

Buffer B

(receive buffer)

Buffer A

(send buffer)

Process A Process B

Empty space

in buffer

Buffer info update: 

Currently empty space for 5 packets



© Peter R. Egli 2015
16/21

Rev. 3.40

Transport Protocols indigoo.com

6. Elements of transport protocols (11/14)
Multiplexing:

Multiplexing in the transport layer can be used for optimization.

a. Upward multiplexing: 

Traffic from a “data stream” is distributed over several transport connections (TSAPs). An 

application may use multiple TCP connections to improve throughput (TCP’s throughput 

depends on delay, so overall throughput may be improved over physical lines with high delay).

b. Downward multiplexing: 

Many “data streams” share the same transport connection using multiple NSAPs, possibly over 

multiple network interfaces (load balancing). Stream Control Transmission Protocol (SCTP) is 

a transport protocol that may use downward multiplexing (multi-homing).

a. Upward multiplexing: 

App

TSAP

NSAP

Phys.

ports

b. Downward multiplexing: 

App

TSAP

NSAP

Phys.

ports



© Peter R. Egli 2015
17/21

Rev. 3.40

Transport Protocols indigoo.com

7. Elements of transport protocols (12/14)
Crash recovery (1/2):

Problem:

A crash of one host (server) during the transmission leads to a connection loss which results 

in data loss. 

Proposed Solution:

The client retransmits only unacknowledged packets.

But:

Does not work in all cases because 

the server sends the ACK and writes the 

data to the application sequentially 

(see next slide).

Host

crash

Duplicate DATAn

or missing DATAn

packet!

write

Host 1

(client)

Host 2

(file server)



© Peter R. Egli 2015
18/21

Rev. 3.40

Transport Protocols indigoo.com

7. Elements of transport protocols (13/14)
Crash recovery (2/2):

No matter what the strategy of the hosts is, it is impossible to recover 100%-ly and 

transparently to the application from transport layer crashes. More generally: A crash at layer N 

can only be handled at layer N+1 (a system crash is a crash at every layer).

Thus:

It is left to the application layer to handle crashes of the remote host (client or server). 

Generally applications detect that the remote host has died and then simply restart the 

connection and retransmit everything.

Result:

OK = Protocol works correctly

DUP = Protocol creates a duplicate message

LOST = Protocol loses a message

State:

S0 = No unacknowledged packet outstanding

S1 = 1 unacknowledged packet outstanding

Action:

A = Server sending acknowledgment

W = Server writing to output process

C = Crashing

Strategy used by

the sending host

Strategy used by the receiving host

First ACK, then write First write, then ACK

AC(W) AWC C(AW) C(WA) WAC WC(A)

Always retransmit OK DUP OK OK DUP DUP

Never retransmit LOST OK LOST LOST OK OK

Retransmit in S0 OK DUP LOST LOST DUP OK

Retransmit in S1 LOST OK OK OK OK DUP

Source: http://authors.phptr.com/tanenbaumcn4/



© Peter R. Egli 2015
19/21

Rev. 3.40

Transport Protocols indigoo.com

Process A

LISTEN()
CONNECT()

RECEIVE()SEND()

RECEIVE()
SEND()

CONNECTION REQUEST

DATA

DATA

DISCONNECT REQUEST
DISCONNECT()

8. Elements of transport protocols (14/14)
Programming API:

The programming API of the transport layer depends on the platform / language / framework

that is used. However, the transport APIs of different platforms are usually very similar.

A generic API of a connection-oriented transport protocol could look as follows:

Primitive 

(function)
Description

LISTEN

This function blocks until another process 

tries to connect (calls CONNECT), thus does a 

passive open.

CONNECT

Sends a connection request packet, thus does 

an active open.

This function is the counterpart to the LISTEN 

function.

SEND Send user data.

RECEIVE Blocks until a user data packet arrives.

DISCONNECT
Sends a disconnect request to close the 

connection.

Process B



© Peter R. Egli 2015
20/21

Rev. 3.40

Transport Protocols indigoo.com

9. Transport layer characteristics (1/2)
A transport layer protocol is either connection-oriented or connection-less.

Connection-oriented transport protocols:

The peers establish a connection prior to a data exchange.

This is similar to a telephone line that needs setting up a connection prior to a conversation.

Connection-less transport protocols: 

The peers send packets without a prior connection establishment.

This is similar to the traditional postal service.

Process A Process B

Process A Process B



© Peter R. Egli 2015
21/21

Rev. 3.40

Transport Protocols indigoo.com

9. Transport layer characteristics (2/2)
Reliable versus unreliable service:

Transport protocols provide reither eliable (guaranteed delivery) or unreliable (best-effort)

service.

Combinations:

The characteristics connection-oriented / connection-less and reliable / unreliable can be

combined. Usually connection-oriented protocols provide reliable transport service.

Reliable Unreliable

Connection-oriented TCP, SCTP -

Connection-less RUDP UDP

Process A Process B

UDP: Unreliable, connection-less message (datagram) delivery protocol.

TCP: Reliable, connection-oriented stream transfer protocol.

SCTP: Reliable, connection-oriented message transfer protocol.

RUDP: Reliable UDP (mixture between TCP and UDP)


