OVERVIEW OF THE PPP PROTOCOL SUITE
FOR POINT TO POINT LINKS
PPP - Point to Point Protocol

Contents
1. SLIP - Serial Line IP
2. Overview of PPP
3. Layer 2 functions
4. PPP protocol stack
5. PPP protocols
6. PPP framing with HDLC
7. LCP and NCP
8. PPP authentication
9. Typical PPP session
1. SLIP (Serial Line IP, RFC1055) versus PPP
SLIP is a predecessor of PPP.
SLIP was used as framing protocol over serial lines before the advent of PPP.
PPP was devised in order to overcome the deficiencies of SLIP.

SLIP framing:
Frame delimiter = The byte 0xC0 serves as frame delimiter.
For transparency, the bytes 0xDB, 0xDC are used as escape sequence for 0xC0 in the payload.
→ 0xC0 in payload becomes 0xDB 0xDC in SLIP frame.
→ 0xDB in payload becomes 0xDB 0xDD in SLIP frame.

SLIP deficiencies:
1. SLIP does not have error detection mechanism (left to TCP to detect and recover from errors on the transmission line).
2. SLIP only supports IP (no other layer 3 protocols).
3. SLIP does not provide dynamic IP address assignment.
4. SLIP does not provide authentication.
2. Overview of PPP
PPP is a protocol suite for serial links which do not provide a framing (raw bit pipes).

Physical bit transport
- HDLC
- Phy

Framing (message boundary)
- HDLC
- Phy

Link (layer 2) establishment and option negotiation
- LCP
- NCP
- PAP
- CHAP
- EAP

Assignment of IP address, DNS server
- IP: 1.2.3.4
- DNS: 2.3.4.5
- Your IP: 1.2.3.4 and DNS: 2.3.4.5

Authentication of user
- ‘Tell me who you are’
- I am user@domain.com+password

Exchange of IP packets

PPP - Point to Point Protocol

© Peter R. Egli 2015
Rev. 2.90
3. Layer 2 functions
Layer 2 functions and corresponding PPP protocol:

<table>
<thead>
<tr>
<th>L2 Function</th>
<th>Description</th>
<th>Provided by PPP Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Framing</td>
<td>Serial lines provide bit transport, thus a means for finding the start of packets is required.</td>
<td>HDLC (not part of PPP protocol suite but provided by ISO 3309 HDLC). PPP defines HDLC as default framing protocol.</td>
</tr>
<tr>
<td>Link setup, control</td>
<td>Link characteristics like maximum frame size need to be negotiated between both ends.</td>
<td>LCP</td>
</tr>
<tr>
<td>Authentication</td>
<td>Client (and optional server) authentication make sure the right communication partners talk to each other.</td>
<td>PAP / CHAP / EAP</td>
</tr>
<tr>
<td>Encryption</td>
<td>Communication may need confidentiality.</td>
<td>ECP along with encryption algorithms like 3DES or AES</td>
</tr>
<tr>
<td>Bandwidth allocation for multi-links</td>
<td>To fulfill increased bandwidth demands, bonding of multiple channels may be required (Multilink PPP-MLPPP).</td>
<td>BAP / BACP</td>
</tr>
<tr>
<td>Bridging / routing mode on both ends</td>
<td>The link ends may be operated in bridged or routed mode. Bridging requires a control protocol.</td>
<td>BCP</td>
</tr>
<tr>
<td>Setup of network functions</td>
<td>Each network protocol (IP, IPX) requires its own control protocol for functions like IP address assignment.</td>
<td>NCP (IPCP)</td>
</tr>
<tr>
<td>Data compression on link</td>
<td>Serial links are typically slow (modem lines etc.), so compression increases available bandwidth.</td>
<td>CCP</td>
</tr>
<tr>
<td>Monitoring the link</td>
<td>The link quality may need to be monitored.</td>
<td>LQR / LQM</td>
</tr>
</tbody>
</table>
PPP - Point to Point Protocol

4. PPP (RFC1661 et.al.) protocol stack
PPP is not a single protocol but a protocol suite containing protocols that address various aspects of point-to-point layer 2 communication.

PPP is an asymmetric protocol suite. The 2 parties in a PPP session are the initiator (I, usually client) and the responder (R, usually server).

PPP's main function are:
- a. Packet encapsulation and framing on point-to-point links
- b. Link setup (LCP sub-protocol)
- c. Authentication
- d. Network control, basically assigning an IP address and DNS server addresses to clients
PPP - Point to Point Protocol

5. PPP protocols (1/2)

LCP - Link Control Protocol:
LCP negotiates and controls link parameters on both ends (e.g. MRU Max. Receive Unit, header compression, encapsulation).

CHAP - CHallenge Authentication Protocol:
Description see below.

PAP - Password Authentication Protocol:
Description see below.

EAP - Extensible Authentication Protocol:
EAP is a protocol that supports a range of authentication algorithms/protocols.

IPCP - IP Control Protocol (is an NCP Network Control Protocol):
IPCP establishes IP operation on both ends of point-to-point links (mainly assignment of IP address and DNS server from responder to initiator).
5. PPP protocols (2/2)

CCP - Compression Control Protocol:
CCP negotiates and controls compression on both ends of link.

BCP - Bridging Control Protocol:
BCP establishes bridging operation on both ends of point-to-point link (similar to IPCP, but instead of routing it initializes bridging).

BAP/BACP - Bandwidth Allocation (Control) Protocol:
BAP/BACP can be used to add/remove individual links in a multi-link bundle (MultiLink PPP).

ECP - Encryption Control Protocol:
ECP allows configuring and enabling encryption on both ends of the link.

LQM – Link Quality Monitoring:
LQM is used for monitoring the link quality. LQR is used for link quality reporting.
6. PPP framing with HDLC

The PPP framing is a variant of HDLC (High Level Data Link Control). The framing is character oriented, i.e. the frame always has an integral number of bytes (=octet). When the payload (user data) contains flags, an escape byte 0x7D is inserted (byte stuffing).

The field address is fixed = 0xFF which means that all stations are to accept the frame.

Control = 0x03 means that the frame is unnumbered (PPP does provide error detection, but no error correction; reliable transmission with PPP is set forth in RFC1663).

The protocol field identifies the layer 3 protocol contained in the payload (for protocol values see IANA assigned numbers).

The payload is variable length (default 1500 bytes).

The checksum is either a 2 byte CRC16 (default) or 4 byte CRC32 (for frames > 4kB).
PPP - Point to Point Protocol

7. LCP and NCP

A. LCP (Link Control Protocol):
LCP is used for establishing the link.
LCP allows negotiating link options like:
 a. Authentication protocol to be used.
 b. Header compression / address field compression.
 c. MRU (maximum receive unit).

LCP periodically tests the link with symmetric LCP-Echo requests / replies.
LCP brings down the link gracefully when it is no longer in use.

B. NCP (Network Control Protocol):
NCP is used for the dynamic assignment of an IP address to the client and the assignment of a primary and secondary DNS server.

The host must set a default route to the PPP interface since there is no default gateway IP address (the link is point-to-point, thus typically the link is unnumbered without an IP address on the server side).
8. PPP authentication
PAP and CHAP are used for Authentication with PPP (is the one I am talking to the one he pretends to be?).

PAP RFC1661 Password Authentication Protocol:
PAP simply sends a username and password (cleartext) to the remote computer. Thus PAP is considered insecure.
PAP is symmetric and does not allow asymmetric settings with an authenticator and a peer (authenticator authenticates peer).

CHAP RFC1994 Challenge Handshake Authentication Protocol:
With CHAP, an authenticator (usually server) authenticates a peer (usually client). Thus CHAP is asymmetric.
CHAP procedure:
1. The authenticator computes a random value (=challenge) to foil replay attacks.
2. The authenticator sends the challenge to the peer.
3. The peer computes a hash (MD5) value on the identifier (username), secret (password) and challenge.
4. The peer sends hash value to authenticator.
5. The authenticator performs the same calculation and checks if the result is ok.
9. Typical PPP session

Wireshark trace of a PPP session with CHAP authentication.

I:	1	0.000000 Client -> Server	PPP	LCP	PPP	LCP	Configuration Request
R:	2	0.028594 Server -> Client	PPP	LCP	PPP	LCP	Configuration Request
I:	3	0.029362 Client -> Server	PPP	LCP	PPP	LCP	Configuration Ack
R:	4	0.030818 Server -> Client	PPP	LCP	PPP	LCP	Configuration Reject
I:	5	0.031299 Client -> Server	PPP	LCP	PPP	LCP	Configuration Request
R:	6	0.063986 Server -> Client	PPP	LCP	PPP	LCP	Configuration Ack
I:	7	0.064776 Client -> Server	PPP	LCP	PPP	LCP	Identification
I:	8	0.066026 Client -> Server	PPP	LCP	PPP	LCP	Identification
R:	9	0.068683 Server -> Client	PPP	CHAP	PPP	CHAP	Challenge
I:	10	0.069147 Client -> Server	PPP	CHAP	PPP	CHAP	Response
R:	11	0.718392 Server -> Client	PPP	CHAP	PPP	CHAP	Success
I:	12	0.720670 Client -> Server	PPP	CCP	PPP	CCP	Configuration Request
I:	13	0.722227 Client -> Server	PPP	IPCP	PPP	IPCP	Configuration Request
R:	14	0.885780 Server -> Client	PPP	IPCP	PPP	IPCP	Configuration Request
I:	15	0.932285 Client -> Server	PPP	IPCP	PPP	IPCP	Configuration Ack
I:	16	0.933597 Client -> Server	PPP	IPCP	PPP	IPCP	Configuration Request
R:	17	0.959508 Server -> Client	PPP	IPCP	PPP	IPCP	Configuration Nak
I:	18	0.960196 Client -> Server	PPP	IPCP	PPP	IPCP	Configuration Request
R:	19	0.984960 Server -> Client	PPP	IPCP	PPP	IPCP	Configuration Ack

... PPP data

R:	20	1.156618 Server -> Client	PPP	LCP	PPP	LCP	Echo Request
I:	21	1.275972 Client -> Server	PPP	LCP	PPP	LCP	Echo Reply
R:	22	11.156947 Server -> Client	PPP	LCP	PPP	LCP	Echo Request
R:	25	13.341129 Server -> Client	PPP	LCP	PPP	LCP	Termination Ack

Key:
I: Initiator
R: Responder