
© Peter R. Egli 2015 
1/16 

Rev. 1.40 

Android NDK – Native Development Kit indigoo.com 

Peter R. Egli 
INDIGOO.COM 

OVERVIEW OF THE ANDROID 
NATIVE DEVELOPMENT KIT 

ANDROID 
NDK 



© Peter R. Egli 2015 
2/16 

Rev. 1.40 

Android NDK – Native Development Kit indigoo.com 

Contents 
1. What you can do with NDK 

2. When to use native code 

3. Stable APIs to use / available libraries 

4. Build native applications with NDK 

5. NDK contents and structure 

6. NDK cross-compiler suite 

7. Android EABI 

8. NDK C++ support 

9. JNI - Calling native functions from Java code 

10. SDK project with native code 

11. Native activity 



© Peter R. Egli 2015 
3/16 

Rev. 1.40 

Android NDK – Native Development Kit indigoo.com 

1. What you can do with NDK 
• Build native libraries that are callable from Android Java application code (JNI). 

• Build executables (non-recommended use of NDK). 

• Debug native program (with gdb). 

Android Java application 

Native library (*.so) 

JNI 

Dalvik VM 
Recommended use of native functions: 

An Android Java application makes native 

calls through JNI. 

Thus the entire application running in the VM 

is subject to the defined  

Android application lifecycle. 

 

It is possible to run entirely native applications 

on Android. However, it is  

recommended to use a small Java wrapper 

for managing the lifecycle of the application 

(start, stop). 

Android application (*.apk) 

Stable native libraries 

(libc, libm, liblog …) 



© Peter R. Egli 2015 
4/16 

Rev. 1.40 

Android NDK – Native Development Kit indigoo.com 

2. When to use native code 
The power of Android lies in the rich Java application framework to be used by Android 

applications written in Java. 

In special cases, however, it may be required to write native code that directly runs on the CPU 

without the Android VM interpreter. 

NDK is a toolkit for writing and integrating native code with Java application code. 

 

Native code characteristics for use in Android: 

• Graphically and computationally intensive (e.g. complex algorithms) 

• Few library dependencies (restricted to stable Android libraries provided by NDK) 

• Little interaction between Java application code and native code (ideally, the Java 

application calls computationally intensive native functions and receives the result; there 

should not be frequent calls and callbacks between Java and native code) 

 

Primary uses of NDK: 

NDK should be used to build native libraries (shared objects) that are called by an Android 

application. 

Entirely native applications without Java code are possible starting from Android 2.3 

(Gingerbread) by using NativeActivity. 

 

Non-recommeded uses of NDK: 

Custom native applications that run outside the VM. 



© Peter R. Egli 2015 
5/16 

Rev. 1.40 

Android NDK – Native Development Kit indigoo.com 

3. Stable APIs to use / available libraries 
The Android NDK contains a small number of stable libraries that are guaranteed to be 

contained in successive Android versions. 

It is recommended that native code only make use of these stable libraries. If native code uses 

non-stable libraries, the native application may break upon an Android update. 

android-3 android-4

android-5

android-6

android-7 android-8 android-9 android-14

Library Description Android 1.5 Android 1.6 Android 2.0 Android 2.2 Android 2.3 Android 4.0

crtbegin_dynamic.o Calls of global object ctors Yes Yes Yes Yes Yes Yes

crtbegin_so.o Calls of global object ctors Yes Yes Yes Yes Yes Yes

crtbegin_static.o Calls of global object ctors Yes Yes Yes Yes Yes Yes

crtend_android.o Calls of global object dtors Yes Yes Yes Yes Yes Yes

crtend_so.o Calls of global object dtors Yes Yes Yes Yes Yes Yes

libandroid.so Functions for access to Java platform from native code No No No No Yes Yes

libc.so Standard C library (bionic) Yes Yes Yes Yes Yes Yes

libdl.so Dynamic linker library Yes Yes Yes Yes Yes Yes

libEGL.so Interface library for low level graphics buffer access No No No No Yes Yes

libGLESv1_CM.so Open GL graphics library No Yes Yes Yes Yes Yes

libGLESv2.so Open GL graphics library No No Yes Yes Yes Yes

libjnigraphics.so C-function-based library for graphics pixel access No No No Yes Yes Yes

liblog.so Android logging library Yes Yes Yes Yes Yes Yes

libm.so Math library Yes Yes Yes Yes Yes Yes

libOpenMAXAL.so Audio and video streaming library No No No No No Yes

libOpenSLES.so Audio streaming library No No No No Yes Yes

libstdc++.so Minimal C++ library (no exceptions, no RTTI) Yes Yes Yes Yes Yes Yes

libthread_db.so Thread debug support library. Yes Yes Yes Yes Yes Yes



© Peter R. Egli 2015 
6/16 

Rev. 1.40 

Android NDK – Native Development Kit indigoo.com 

4. Build native applications with NDK 
The NDK build system is made for creating .a (static libs) and .so (shared libs). 

The shell script <NDK-base>/ndk-build creates the library output. 

 

With some minimal effort it is possible to create fully native applications: 

 

ndk-build 
C/C++ 

source 

NDK 

arm-eabi-gcc 

NDK 

arm-eabi-ld 

NDK 

Prebuilt 

libraries 

.o 

.a 

.so 

C/C++ 

source 

(main) 

Native 

executable 



© Peter R. Egli 2015 
7/16 

Rev. 1.40 

Android NDK – Native Development Kit indigoo.com 

5. NDK contents and structure (1/2) 
NDK installation simply requires unzipping it to a suitable location. 

NDK contains a cross-toolchain for ARM and x86 based CPUs, header files and stable libraries. 

NDK R7 structure: 

Build scripts (makefiles, awk scripts etc.) 

Documentation (HTML) 

Platforms (header files and stable libraries) 

Build executables (make, awk, sed, echo) 

Samples (hello world, JNI example etc.) 

Source files that can be linked to an application or library 

Test scripts for automated tests of the NDK 

ARM Linux and x86 toolchains (compiler, linker etc.) 

Documentation entry point 

Makefile for building NDK 

Build script for building a native application or library 

Experimental Windows native build script (working?) 

GDB debug start script 

Stack trace analysis tool 

Readme file 

NDK release identifier (contents for R7: r7d) 



© Peter R. Egli 2015 
8/16 

Rev. 1.40 

Android NDK – Native Development Kit indigoo.com 

5. NDK contents and structure (2/2) 
The platforms sub-folder contains stable header files and libraries. 

Android API-level 9 (Android 2.3) 

ARMv7 CPU architecture header files and libs ('sysroot') 

Stable Android API header files and libraries 

C++ headers and libraries are under <NDK-base>/sources/cxx-stl. 



© Peter R. Egli 2015 
9/16 

Rev. 1.40 

Android NDK – Native Development Kit indigoo.com 

6. NDK cross-compiler suite (1/3) 
Standard naming convention for cross-compilers: 

<arch>-<vendor>-(os)-<abi> 

Example: 
arm-linux-androideabi-c++.exe 

 Architecture (CPU): ARM 

 Vendor: None 

 OS: Linux 

 ABI: Android EABI (see below) 

 

NDK toolchains: 

NDK contains GNU-based cross-compile tools for ARM7 and x86 CPUs. 

The NDK toolchain can be used for: 

a. NDK integrated toolchain for building shared libraries for use in an Android application 

b. Standalone toolchain that is invoked by a custom build 



© Peter R. Egli 2015 
10/16 

Rev. 1.40 

Android NDK – Native Development Kit indigoo.com 

6. NDK cross-compiler suite (2/3) 
a. NDK integrated toolchain: 

Location: <NDK-base>/toolchains/arm-linux-androideabi-4.4.3/prebuilt/windows (likewise for 

x86 toolchain). 

The NDK integrated toolchain uses the scripts, header files and library files that are part of the 

NDK installation. 

NDK 

toolchain 

(ndk-build) 



© Peter R. Egli 2015 
11/16 

Rev. 1.40 

Android NDK – Native Development Kit indigoo.com 

6. NDK cross-compiler suite (3/3) 
Standalone toolchain: 

The NDK standalone toolchain is useful for situations where another build system, e.g. as part 

of an open source package, needs to invoke a cross-compiler for building. 

In the standalone toolchain, everything that is needed for building (compilers etc., header files,  

library files) is contained in a single location. 

 

How to create standalone-toolchain: 

1. Start bash shell (on Windows start cygwin shell as administrator) 

2. Run the make standalone toolchain command: 
/cygdrive/c/install/Android-NDK/android-ndk-r7b/build/tools/make-

standalone-toolchain.sh --platform=android-9 --install-

dir=/cygdrive/c/temp/android-standalone-toolchain/ 

 

How to invoke the standalone-toolchain: 
SET PATH=c:\temp\android-standalone-toolchain;%PATH% 

SET CC=arm-linux-androideabi-gcc.exe 

%CC% -o foo.o –c foo.c 



© Peter R. Egli 2015 
12/16 

Rev. 1.40 

Android NDK – Native Development Kit indigoo.com 

7. Android EABI 
What is an ABI? 

ABI (Application Binary Interface) defines how an application interacts with the underlying 

system at run-time. 

An ABI is a low-level interface definition that comprises the following: 

- CPU instruction set to use 

- Endianness of memory load and store operations 

- Format of executable binaries (programs, libraries) 

- Function call conventions (stack framing when functions are called, argument passing) 

- Alignment of structs and struct fields, enums 

The goal of an ABI is binary compatibility between executables (e.g. program calling a library 

function). 

An EABI (Embedded ABI) defines an ABI for embedded targets. 

 

Android EABI: 

Android EABI is basically identical to the Linux (GNU) EABI with the difference of the C-library 

(bionic C-library instead of GNU C-library). 

Android provides 3 EABIs: 

a. armeabi (ARMv5TE instruction set, thumb mode) 

b. armeabi-v7a (Thumb-2 instruction set extensions, hardware floating point support) 

c. x86 (IA-32 based instruction set) 

For more details see <NDK-base>/docs/CPU-ARCH-ABIS.html 



© Peter R. Egli 2015 
13/16 

Rev. 1.40 

Android NDK – Native Development Kit indigoo.com 

8. NDK C++ support 
NDK provides some basic C++ runtime support through the default /system/lib/libstdc++ 

library. 

The following C++ features are not supported: 

- C++ exceptions 

- RTTI (Run-Time Time Information) 

- Standard C++ library 

 

C++ runtimes: 

NDK provides different libraries (run-times) with different levels of C++ support: 

 

 

 

 

 

 

Application files must all be linked against the same runtime library (mixing is not possible). 

The C++ runtime is specified in the (optional) Application.mk makefile. 

 

Static versus shared libraries: 

Shared libraries are the preferred mode of library use to conserve space (library not contained 

multiple times in different executables) and avoid problems with global library variables. 
 

More details see CPLUSPLUS-SUPPORT.html. 

C++ Runtime Library C++ exceptions RTTI Standard C++ library 

system libstdc++ No No No 

gabi+ libgabi++ No Yes No 

stlport libstlport No Yes Yes 

gnustl libgnustl Yes Yes Yes 



© Peter R. Egli 2015 
14/16 

Rev. 1.40 

Android NDK – Native Development Kit indigoo.com 

9. JNI - Calling native functions from Java code 
Java code: 

Declaration of native function that is contained in a library. 

 

 

 

Native code: 
jstring 

Java_<path to Java package>_<Java-Class>_<function-name>(JNIEnv* env, 

                                                         jobject thiz) 

{ 

  … 

} 

 
where JNIEnv identifies the JNI context of the calling VM and jobject is a reference to  

the calling Java object. 



© Peter R. Egli 2015 
15/16 

Rev. 1.40 

Android NDK – Native Development Kit indigoo.com 

10. SDK project with native code 
1. Build native sources to library with ndk-build 

2. Compile Android Java sources with ADT plugin 

3. Create Android application package (.apk) with ADT plugin 

NDK 

toolchain 

(ndk-build) 

NDK 

toolchain 

(ndk-build) 

.apk 



© Peter R. Egli 2015 
16/16 

Rev. 1.40 

Android NDK – Native Development Kit indigoo.com 

*.apk package 

11. Native activity 
Android provides to possibility to implement a completely native activity. 

Possible use cases: 

a. Games (direct access from native code to graphics) 

b. Use of existing application code available in C++ 

 

 Native activities are still running in the VM. Thus the lifecycle for normal Android application 

still applies. 

 

 Native activities can be started in 2 ways: 

Java wrapper 

Native 

activity in 

C/C++ 

 Small Java Wrapper starts native activity 

 Attribute HasCode=true in manifest 

Native 

activity in 

C/C++ 

*.apk package 

 Native activity directly started 

 Attribute HasCode=false in manifest 


