
© Peter R. Egli 2015
1/20

Rev. 1.60

COM – DCOM - COM+ indigoo.com

Peter R. Egli
INDIGOO.COM

OVERVIEW OF MICROSOFTS COM, DCOM AND
COM+ COMPONENT TECHNOLOGIES

COM, DCOM,
COM+

© Peter R. Egli 2015
2/20

Rev. 1.60

COM – DCOM - COM+ indigoo.com

Contents
1. Evolution of COM

2. COM, DCOM, ActiveX, OLE, COM+

3. Structure of COM Components

4. (D)COM IUnknown Interface

5. Component Lookup and Access

6. Microsoft IDL File

7. Execution / Access Models

8. DCOM Architecture

9. COM/DCOM/COM+ Tools

10. Access (D)COM Objects from .Net (COM-.Net Interop)

11. COM+ Applications

12. Creation of COM Projects in Visual Studio

13. Limitations of COM

© Peter R. Egli 2015
3/20

Rev. 1.60

COM – DCOM - COM+ indigoo.com

1. Evolution of COM
Over time Microsoft enhanced and rebranded the

different object and integration technologies.

.Net is a technological break because it

is an entirely new technology.

DDE

1987

Dynamic Data Exchange.

 One of the first inter-process

communication means in Windows

Technology for compound

documents (e.g. Word document

with embedded Excel

document).

OLE

1990 1993 1995 1996 1998 2000

COM

DCOM

ActiveX

MTS

COM+ Object Linking and Embedding.

 Based on DDE.

 Technology for embedding and

linking of documents in other

documents.
Component Object Model.

 Object technology

confined to single machines.

Distributed COM (COM over

RPC).

 Technology with

remotable objects.

 Microsoft‘s answer to

CORBA.

 Renamed part of OLE

related to networking.

 The parts of OLE relating

to compound documents

remained OLE.

Microsoft Transaction

Server.

 Runs on top of

COM/DCOM, but is not really

integrated with these

technologies.

 Introduced transaction

management, component

deployment and other

services.

 Fusing of COM/DCOM and

MTS plus additional

services.

 Uses COM as object

technology.

© Peter R. Egli 2015
4/20

Rev. 1.60

COM – DCOM - COM+ indigoo.com

2. What are COM, DCOM, ActiveX, OLE, COM+ ?
COM is Microsofts object / component technology.

DCOM = remote access to COM objects / components (wire protocol = MSRPC which is a

version of DCE RPC).

ActiveX/OLE uses COM as the underpinning. ActiveX / OLE provide additional services like

reusable / programmable controls (OCX – OLE Control Extensions), automation access

between office documents and in-process activation.

COM+ is the successor to the MTS/COM combo and provides a unified distributed

component/object technology including the transaction services of MTS.

COM+ uses the COM component specification and adds additional component services.

COM

ActiveX / OLE

MS RPC

MTS

COM+ COM

ActiveX / OLE

MS RPC

MTS

COM+

Client Server

DCOM

© Peter R. Egli 2015
5/20

Rev. 1.60

COM – DCOM - COM+ indigoo.com

3. Structure of COM Components
Relationship of objects, components, interfaces, classes, applications:

• A COM component contains 1..* objects.

• A COM component exists either as DLL (linked to the calling client, in-process) or as a

separately running executable (out-of-process server).

• A COM object implements 1..* interfaces which are defined in the IDL-file.

• All objects (classes) of a component make up a type library.

• Every object has an IUnknown interface (see below).

• Component type library, every interface and every class / object has a globally unique ID

(GUID, uuid).

COM Object

(CoDAO)

IUnknown

IDAO

IPersist

Component (DLL or exe)

COM Object

(CoViewer)

IUnknown

IViewer

uuid: FD4AD...4255B

uuid: A42B8...791BA uuid: 71AA0...25A4C

uuid: 09B4C... 4A746

uuid: 26B4D... D3C86

uuid: 8DA10...124BC

Type

library

Notation:

Client

Reference COM Object

Lollipop = (provided) interface.

Arrow = call of a method of on the

interface

© Peter R. Egli 2015
6/20

Rev. 1.60

COM – DCOM - COM+ indigoo.com

4. (D)COM IUnknown Interface
Every COM object has an IUnknown interface.

The IUnknown interface is used for:

 a. Introspection / reflection:

 Method QueryInterface() allows to dynamically discover other interfaces of an object (check

 if an object supports a specific interface identified by an interface ID).

 b. Life-cycle control / garbage collection (GC):

 AddRef()  Client increases reference count.

 Release()  Client releases its reference thus decrementing the reference count.

 GC collects object once the reference count becomes 0.

COM Object

(CoViewer)

IUnknown

IViewer

COM Object

(CoDAO)

IUnknown
IDAO

IPersist

Component

(DLL or exe)

QueryInterface()

AddRef()

Release()

© Peter R. Egli 2015
7/20

Rev. 1.60

COM – DCOM - COM+ indigoo.com

5. Component Lookup and Access (1/3)
Objects are registered in the registry under HKEY_CLASSES_ROOT/CLSID.

Every object and interface has a registry entry.

The registry is consulted for locating (lookup) objects based on a ProgID (mapping of

GUID/uuid to implementation).

Location of server DLL containing the object class

Server type, here an inproc object (object is loaded into the client‘s process).

Alternative: LocalServer32 object running in an executable.

ProgID containing the version

Example „COMHelloWorld.COMHelloWorld.1“

ProgID without version

„COMHelloWorld.COMHelloWorld“

© Peter R. Egli 2015
8/20

Rev. 1.60

COM – DCOM - COM+ indigoo.com

5. Component Lookup and Access (2/3)
Clients contact the SCM (Service Control Manager) in order to obtain an object reference.

In case of remote objects (DCOM), the local SCM contacts the remote SCM.

Client

application

Server

Component

SCM

COM Object
Ixyz

1. Request with CLSID

(GUID, uuid)

Registry

2. Lookup

in registry

3. SCM instantiates

COM object

4. SCM passes

reference to

client

5. Call on COM

object

© Peter R. Egli 2015
9/20

Rev. 1.60

COM – DCOM - COM+ indigoo.com

5. Component Lookup and Access (3/3)
Problem of registry-based component lookup:

DLL-hell (different applications requiring different and possibly incompatible versions of

COM-libraries).

Solution:

Registry free creation of objects (requires Windows XP or higher). Also called „isolated COM“.

• Different applications may use different versions of COM-components.

• COM-components no longer need to be registered but may be deployed with XCOPY-

deployment (simple copying of components without creating registry entries by an installer).

• Component is described in a manifest file which is used by the calling application to load

and create the component.

Visual Studio settings (create manifest file as part of build):

Source: http://msdn.microsoft.com/de-ch/magazine/cc188708(en-us).aspx

© Peter R. Egli 2015
10/20

Rev. 1.60

COM – DCOM - COM+ indigoo.com

HelloWorld.cpp

6. Microsoft IDL File
IDL-files for COM use the MIDL-format (Microsoft IDL).

IDL files are compiled with MIDL.exe (automatically in Visual Studio ATL-project).

MIDL.exe

...

[

 object,

 uuid(FD4ADCD2-C7FC-466E-AD75-EBC03024255B),

 dual,

 nonextensible,

 helpstring("ICOMHelloWorld Interface"),

 pointer_default(unique)

]

interface ICOMHelloWorld : IDispatch{

 [id(1), helpstring("method ShowMessage")] HRESULT ShowMessage(void);

 [id(2), helpstring("method ShowMessageWithParam")] HRESULT ShowMessageWithParam([in] BSTR message);

};

...

COMHelloWorld.idl

...

public:

 STDMETHOD(ShowMessage)(void);

public:

 STDMETHOD(ShowMessageWithParam)(BSTR message);

};

...

HelloWorld.h

COMHelloWorld.h COMHelloWorld.cpp

© Peter R. Egli 2015
11/20

Rev. 1.60

COM – DCOM - COM+ indigoo.com

7. Execution / Access Models
In-proc access: Component resides in a DLL.

 The client loads the component into its process.

Local server: Component resides in an executable and runs in its own process on the

 local machine. Access through RPC.

Remote server: Component resides in an executable and runs on a remote machine.

 Access through RPC.

COM Object

Client

COM

Local proxy

Remote

proxy

Client process

Client machine

COM

Stub

COM Object

RPC

Remote machine

COM

Stub

RPC
COM Object

In-process

access

Local

server

Remote

server

© Peter R. Egli 2015
12/20

Rev. 1.60

COM – DCOM - COM+ indigoo.com

8. DCOM Architecture
Client proxy: Proxy object on client side for accessing the server object.

Stub: Server interface stub that complements the client interface proxy.

Registry: Contains a list of mappings of class / object GUID to implementation library.

SCM: Service Control Manager (RPCSS.exe) which consults registry and creates /

 instantiates a new server object based on the GUID (comparable to ORB in CORBA).

 The SCM hides the registry from (D)COM.

COM Object

Interface

stub

SCM

COM Object

Interface

proxy

SCM Registry

Client Server

RPC RPC

Interface on SCM for

remote activation:

IRemoteActivation::

RemoteActivation

Client

component

library

Server

component

Actual access to

remote object is done

through RPC
ORB: Object Request Broker

© Peter R. Egli 2015
13/20

Rev. 1.60

COM – DCOM - COM+ indigoo.com

9. COM / DCOM / COM+ Tools
Register COM component:

regsvr32 <COM-lib>.dll

Registry of objects:

Windows registry (edit with regedit.exe or regedt32.exe)

Component service explorer:

Control Panel  Administrative Tools

 Component Services

or simply start dcomcnfg.exe

© Peter R. Egli 2015
14/20

Rev. 1.60

COM – DCOM - COM+ indigoo.com

10. Access (D)COM Objects from .Net (COM-.Net Interop)
.Net introduced an entirely new object model:
• .Net object lifetime is managed by garbage collector (COM: lifecycle controlled by client).

• .Net clients have far greater introspection possibilities through reflection.

• .Net objects reside in a managed environment (managed code).

The .Net environment (CLR: Common Language Runtime) provides wrappers for COM-.Net interoperability:

 COM.Net: COM callable wrapper CCW .

 .NetCOM: Runtime Callable Wrapper (RCW).

 The wrappers are contained in DLLs called Interop.xxx.

Tasks of wrappers:

• Marshalling of parameters (e.g. MFC-type BSTR  .Net string)

• RCW: COM object reference counting (RCW); decreases reference count on COM object if object is no

longer needed on .Net managed side.

• .Net object reference release (CCW); map COM-side Release() call to .Net managed object release

Source: http://msdn.microsoft.com/en-us/library/5dxz80y2.aspx

COM .Net

© Peter R. Egli 2015
15/20

Rev. 1.60

COM – DCOM - COM+ indigoo.com

11. COM+ Applications
COM+ applications host (contain) 1..n COM-components.

Dcomcnfg.exe shows a list of active COM+ applications.

COM components

of „COM+ Utilities“ COM+

application

© Peter R. Egli 2015
16/20

Rev. 1.60

COM – DCOM - COM+ indigoo.com

12. Creation of COM Projects in Visual Studio (1/4)
1. Create Visual Studio ATL C++ project with the following settings:

2. Add a new class to the COM component:

© Peter R. Egli 2015
17/20

Rev. 1.60

COM – DCOM - COM+ indigoo.com

12. Creation of COM Projects in Visual Studio (2/4)
3. ATL Simple Object Wizard:

Set names (Class, Coclass and Interface names may be different):

4. Add method to interface (e.g. ShowMessage()):

© Peter R. Egli 2015
18/20

Rev. 1.60

COM – DCOM - COM+ indigoo.com

12. Creation of COM Projects in Visual Studio (3/4)
5. Implement interface method (ShowMessage()):

Add user code to implementation of method in implementation class (HelloWorld.cpp):
STDMETHODIMP CHelloWorld::ShowMessage(void)

{

 ::MessageBox(::GetActiveWindow(),_T("Hello World from COMHelloWorld."),

 _T("First COM+ Application"),MB_OK);

 return S_OK;

}

6. Compile ATL COM project

7. Register COM:

Open command shell, change to debug directory of COM project.
>regsvr32.exe COMHelloWorld.dll

8. Create client, e.g. in Excel-VBA:

 Create new Excel file

 ToolsMacroVisual Basic Editor

 Add reference to COM component (ToolsReferences):

© Peter R. Egli 2015
19/20

Rev. 1.60

COM – DCOM - COM+ indigoo.com

12. Creation of COM Projects in Visual Studio (4/4)
9. Access the COM component from VBA code:
'TestHelloClient_TLB accesses the COM component using the COM type library (TLB)

'that has to be added to this project in the references (Menu Tools->References)

Sub TestHelloWorldClient_TLB()

 Dim hw As COMHelloWorld

 Dim gw As COMGoodbyeWorld

 Set hw = New COMHelloWorld

 hw.ShowMessage

 Set gw = New COMGoodbyeWorld

 gw.ShowMessage

End Sub

'TestHelloWorldClient_ProgID access the COM component using the ProgID

Sub TestHelloWorldClient_ProgID()

 Dim obj As Object

 Set obj = CreateObject("COMHelloWorld.COMHelloWorld")

 obj.ShowMessage

 Set obj = CreateObject("COMHelloWorld.COMGoodbyeWorld")

 obj.ShowMessage

End Sub

ATL project name Coclass name

Object ProgID

© Peter R. Egli 2015
20/20

Rev. 1.60

COM – DCOM - COM+ indigoo.com

13. Limitations of COM
COM is still widely used by many applications to provide programmatic access for automation

purposes.

However, due to many technological limitations (see below) COM was technologically

superseded by .Net.

 No true inheritance (may be emulated with aggregation and containment).

 No exceptions (only return codes).

 Inconsistent use of IDL (COM uses IDL, but VB or scripting languages like VBA use binary

 representation (type library)).

 No OO-features (static modifier, virtual functions, overloaded methods).

