
© Peter R. Egli 2015
1/23

Rev. 1.90

OSGi service platform indigoo.com

Peter R. Egli
INDIGOO.COM

OVERVIEW OF OSGi, A SERVICE PLATFORM
FOR MODULAR SYSTEMS

OSGi
OPEN SERVICES GATEWAY

INITIATIVE

© Peter R. Egli 2015
2/23

Rev. 1.90

OSGi service platform indigoo.com

Contents
1. What is OSGi?

2. Why OSGi

3. OSGi framework

4. OSGi base architecture and layers

5. OSGi bundle

6. OSGi service registry

7. OSGi security

8. OSGi specifications

9. When is OSGi applicable?

10. OSGi remote services

© Peter R. Egli 2015
3/23

Rev. 1.90

OSGi service platform indigoo.com

1. What is OSGi?
OSGi = Component-based technology:

OSGi is a component-based technology, i.e. a set of components (bundles) with defined

interfaces that live within a runtime environment.

OSGi = runtime / hosting environment (container):

OSGi is a runtime environment that controls the lifecycle of the components (install, start,

suspend, stop, deinstall) and controls the dependencies between the components (dependency

injection).

OSGi = service-based technology:

OSGi is a service-based technology. The interface of a bundle is separated from the

implementation. The interface is published by the bundle in the OSGi service registry.

OSGi Implementations:

Apache Felix, Eclipse Equinox, Knopflerfish, ProSyst.

What is a component (UML definition)?

A component is a modular part of a software system with defined interfaces (ports). A

component is replaceable by another equivalent component with an identical set of provided

and required interfaces. A component hides its implementation to the outside world but makes

its functionality available through interfaces.
Component

IProvided0 IRequired0

IRequired1 IProvided1

© Peter R. Egli 2015
4/23

Rev. 1.90

OSGi service platform indigoo.com

2. Why OSGi?
OSGi was mainly developed because Java has only weak support for components.

The Java modularity (component) model is weak because:

 Java selects modules (jar-files) through the classpath (selection through location instead

 of properties).

 Dependencies between jar-files are unclear.

 java –cp foo.jar bar.jar MyApp.MainClass (what are dependencies between

 foo.jar and bar.jar?)

 Different versions of a module (jar-file) are not directly supported.

 java –cp foo-1.0.jar bar.jar MyApp.MainClass (version control needs to be done

 on classpath level, i.e. module of a

 specific version needs to be selected

 on the classpath)

OSGi introduces bundles (=components) with a manifest containing:

a. Defined imports (required interfaces) and exports (provided interfaces)

b. Internal classpath

c. Versioning of bundles

© Peter R. Egli 2015
5/23

Rev. 1.90

OSGi service platform indigoo.com

3. OSGi framework
Functions of OSGi framework:

1. Installation of «primary» bundle:

The primary bundle has the task to install other available bundles (as defined by OSGi initial

provisioning specification).

2. Provide service registry:

The OSGi framework provides a service registry through which bundles can publish, find and

bind to service.

3. Install class loader for bundles, keep track of references:

In OSGi, every bundle has its own class loader. As every Java class loader defines its own

namespace, a class X loaded in class loader CL1 is different from the class X loaded in class

loader CL2. Therefore the OSGi framework must make sure that package-exported classes use

the same class loader.

4. Provide standard services to bundles:

The OSGi framework provides standard services like:

Log service

Event admin service

Permission admin service

Wire admin service

Configuration admin service

© Peter R. Egli 2015
6/23

Rev. 1.90

OSGi service platform indigoo.com

4. OSGi base architecture and layers
OSGi is based on a layered architecture that usually runs on a JVM.

OSGi may also be run on other runtime environments such as .Net (e.g. OSGi.NET), but to date

OSGi is mostly used in the Java domain.

Bundles:

This layer contains the bundles developed by users.

Security:

The security «layer» is «cross-cutting» and applies its security

functions to all OSGi layers.

Service (registry):

The service layer connects bundles in a dynamic way and lets

bundles publish, subscribe and bind to services.

Life Cycle:

The life cycle layer controls the entire life cycle of bundles (install,

start, update, stop, deinstall).

Module:

The module layer lets bundles export and import code.

Execution environment:

This layer defines which methods and classes are available in a

specific OSGi runtime environment. Possible environments are

CDC-1.0 (Connected Device Configuration) or JRE-1.1.

JVM (runtime environment):

The JVM is the natural run-time environment for OSGi.

N.B.: .Net could be used as well, but OSGi chose

Java as the primary platform.

Hardware

Operating system

JVM (runtime environment)

Execution environment

Module

Life Cycle

Service (registry)

S
e
c
u

ri
ty

Application / bundles

Blue parts: OSGi framework

https://osgi.codeplex.com/

© Peter R. Egli 2015
7/23

Rev. 1.90

OSGi service platform indigoo.com

5. OSGi bundle (1/7)
Bundle = OSGi-Component:

Components in OSGi are called bundle. In Eclipse, a plugin is implemented through a bundle

(since Eclipse version 3.0). Thus an Eclipse plugin is an OSGi bundle.

Contents of an OSGi bundle:

An OSGi bundle is an ordinary jar-file, i.e. contains classes plus a manifest file.

The manifest file contains OSGi-specific key-value pairs.

Manifest-Version: 1.0

Bundle-Vendor: INDIGOO

Bundle-Version: 1.0.0.201101062241

Bundle-Name: Myfirstbundle

Bundle-Activator: com.indigoo.myfirstbundle.Activator

Bundle-ManifestVersion: 2

Import-Package: org.osgi.framework;version="1.3.0"

Bundle-SymbolicName: com.indigoo.myfirstbundle

Bundle-RequiredExecutionEnvironment: JavaSE-1.6

Manifest

Classes

Bundle

© Peter R. Egli 2015
8/23

Rev. 1.90

OSGi service platform indigoo.com

5. OSGi bundle (2/7)
Export and import of Java packages (set of classes) (1/2):

OSGi bundles can export and import Java packages in a controlled way.

Package export–import lets bundles share code with other bundles.

Package export–import differs from service import–export in that the package-importing bundle

itself is responsible for the creation and deletion of objects (controls part of the lifecycle).

Imported

classes

Exported

classes

Private

classes

Imported

classes

Exported

classes

Private

classes

Java

packages

as jar-files

Export

package

foo.jar version 2

Import

package

foo.jar version 1-3

Bundle 1 Bundle 2

OSGi framework

© Peter R. Egli 2015
9/23

Rev. 1.90

OSGi service platform indigoo.com

5. OSGi bundle (3/7)
Export and import of Java packages (set of classes) (2/2):

Bundles export a specific version of a package (e.g. bundle 1 exports foo.jar version 2).

Bundles define a range of acceptable versions when importing packages (e.g. bundle 2 accepts

foo.jar Version 1…3).

Problem: Uninstallation of a bundle that exports a package.

Solution: OSGi framework lets importing bundles re-import another (compatible) package and

restarts these bundles.

Export of package:

Packages are exported by a statement (key-value pair) in the bundle manifest file with a

comma-separated list of package identifiers.

Example:
Export-Package: com.indigoo.myfirstbundle, com.indigoo.superbundle

Import of package:

Likewise, packages are imported by a statement in the bundle manifest with a comma-

separated list of package identifiers. Packages can be augmented with a version identifier.

Example:
Import-Package: com.indigoo.myfirstbundle;version="1.0.0",

org.osgi.framework;version="1.3.0"

© Peter R. Egli 2015
10/23

Rev. 1.90

OSGi service platform indigoo.com

5. OSGi bundle (4/7)
Export and import of services (1/2):

Java RMI registry as a service registry:

Java provides a simple object registry service through the RMI remote registry.

Problems with Java RMI registry:

Each application or module must control its dependencies individually (usually in different

ways). This leads to code duplication.

Solution with OSGi:

OSGi provides a common service registration and lifecycle service for all bundles and thus

simplifies the dynamic behavior of applications.

Bundles can export functionality as a service (a registered object is a service).

When the bundle becomes active, it registers its service with the OSGi service registry.

The registry is fully dynamic.

Service registry:

 Bundles can register objects as services with the service registry (publish).

 Bundles can search the registry for matching objects (find).

 Bundles can receive notifications when services become registered or unregistered.

© Peter R. Egli 2015
11/23

Rev. 1.90

OSGi service platform indigoo.com

5. OSGi bundle (5/7)
Export and import of services (2/2):

Like packages, services are exported and imported through statements in the bundle’s

manifest file.

Export of service with properties through bundle context:
public Interface IMyService {

 void hello();

}

public class MyService implements IMyService{

 public void hello() {…}

}

Hashtable props = new Hashtable();

props.put("description", "This is my first service");

bc.registerService(IMyService.class.getName(), new MyService(), props);

Import (find) and call of service:
myServiceRef = context.getServiceReference(IMyService.class.getName());

IMyService serviceObjMyService =

(IMyService)context.getService(myServiceRef);

serviceObjMyService.hello();

© Peter R. Egli 2015
12/23

Rev. 1.90

OSGi service platform indigoo.com

5. OSGi bundle (6/7)
Bundle life cycle:

The bundle’s life cycle is controlled with 6 states.

Bundle state Description

INSTALLED The bundle has been successfully installed.

RESOLVED All Java classes that the bundle requires are available. This state indicates that the bundle is ready to be started (all

dependencies have been resolved).

STARTING The bundle is being started, i.e. the OSGi platform has called Activator.start(), but the function did not yet return.

ACTIVE The bundle has been started and is active. The bundle’s expored packages and services can be used by other bundles.

STOPPING Equivalent function to STARTING, i.e. the bundle is being stopped.

UNINSTALLED The bundle has been uninstalled.

INSTALLED

RESOLVED

UNINSTALLED

STARTING

ACTIVE

STOPPING

stop()

start()

© Peter R. Egli 2015
13/23

Rev. 1.90

OSGi service platform indigoo.com

5. OSGi bundle (7/7)
BundleContext object:

The BundleContext object is the «bridge» between a bundle and the OSGi framework.

The BundleContext API lets bundles:

a. register services

b. install service listeners (get a notification upon the availability of a service)

c. obtain references to installed bundles

d. obtain references to installed services (bundle object)

e. install bundles

Bundle Activator object:

The bundle Activator object is

used by the OSGi framework

to control the life cycle

of the bundle (start(), stop() etc.).

OSGi framework

Bundle class

Activator

Bundle 1

Bundle class
Bundle class

BundleContext

Bundle class

Activator

Bundle 2

Bundle class
Bundle class

BundleContext

© Peter R. Egli 2015
14/23

Rev. 1.90

OSGi service platform indigoo.com

6. OSGi service registry
The service registry is the central component of OSGi. Through its dynamic behavior, the

service registry allows to build a SOA of loosely coupled components.

Registration of a service:

A bundle registers a service (=object) with an interface name and a set of properties.

Example:
 Interface name: org.osgi.service.log.LogService

 Property: vendor=indigoo

Registration is dynamic:

If a bundle is stopped, its registered services are unregistered by the OSGi framework.

Declarative service registration:

If the OSGi framework implements the «Declarative Service Spec.», classes of a registered

service are only loaded when another bundle calls the service («lazy loading»).

This helps reducing the memory required for registered services.

Service discovery:

a. Notification-based discovery: A bundle is notified of the existence of a newly registered

service.

b. Active discovery: A bundle actively searches for a specific service.

OSGi supports a filter language to specify what service is searched.

© Peter R. Egli 2015
15/23

Rev. 1.90

OSGi service platform indigoo.com

7. OSGi security
Security is a natural concern when using connected components, particularly in a very

dynamic environment such as OSGi.

OSGi defines a multi-layer security concept that is based on the following layers:

1. Java 2 code security:

E.g. Java file permissions with security manager, Java access modifiers protected/private, Java

language security (no pointers etc.).

2. Minimized bundle content exposure:

Bundle packages and services are not accessible to other bundles except the ones that the

bundles explicitly exports through OSGi.

3. Managed communication links between bundles:

Services are augmented with permissions to give only specific bundles access (use, provide)

to other services.
1. Java code security

2. Minimized bundle content exposure

3. Managed communication between bundles

© Peter R. Egli 2015
16/23

Rev. 1.90

OSGi service platform indigoo.com

8. OSGi specifications (1/5)
OSGi is specified in a number of specifications that share some chapters. As such the

documents define a kind of a profile (applicability of chapter specifications to different

environments).

Chapters Description Core

Spec.

Compendium

Spec.

Enterprise

Spec.

Mobile

Spec.

2: Security Optional layer that underlies the OSGi service platform.

Provides fine-grained security control on top of the Java security

model.

Yes No No No

3-6: Core framework Mandatory implementation.

Defines the layers Module, Life Cycle, Service and framework API.
Yes No No No

7: Package admin

service

Service that manages the lifecycle and depencencies of packages

(classes and resources).
Yes No No No

8: Start level service Controls the startup sequence of bundles (some bundles may have to

be started before others).
Yes No No No

9: Conditional

permission admin

service

Extends Permission admin service.

Allows the definition of permissions that are based on conditions

such as user prompt response, geographic location of the bundle

(~LBS: Location Based Service) etc.

Yes No No No

10: Permission

admin service

Manipulation of permissions of registered or future bundles.
Yes No No No

11: URL handler

service

Allows to dynamically add new URL schemes (protocols) and a

corresponding content handler.
Yes No No No

12: Service hooks Allows extended functionality beyond the standard service primitivies

publish, find and bind. Allows to interact with the service engine, e.g.

to provide a proxy service by a bundle as soon as another bundle

requests the service  service hooks).

Yes No No No

© Peter R. Egli 2015
17/23

Rev. 1.90

OSGi service platform indigoo.com

8. OSGi specifications (2/5)

Chapters Description Core

Spec.

Compendium

Spec.

Enterprise

Spec.

Mobile

Spec.

13: Remote service Allows distributed components and connecting bundles in a

distributed environment. Details see "Distributed OSGi" below.
No Yes Yes No

101: Log service Warning, debug or error logging. No Yes Yes Yes

102: HTTP service Allows bundles to provide JEE-servlets that are accessible over HTTP

(servlets can thus be lifecycle-managed within the OSGi framework

without restart).

No Yes Yes No

103: Device access

service

Locate and start a driver bundle that matches a new device (used for

plug’n’play scenarios).
No Yes No No

104: Configuration

admin service

Configuration read and write service.
No Yes Yes Yes

105: Metatype

service

Allows to define attributes of bundles in computer-readable form as

key-value pairs. No Yes Yes Yes

106: Preferences

service

Access to a hierarchical database of properties (similar to Windows

registry or Java preferences class).
No Yes No No

107: User admin

service

User authentication and authorization.
No Yes Yes No

108: Wire admin

service

Normally bundles define the rules to locate other bundles they use.

Alternatively the wire admin services allows to connect different

services together as defined by a configuration (deployment

configuration).

No Yes No No

109: IO connector

service

Alternative scheme (protocol) registration service for the JME generic

connection framework.
No Yes No Yes

© Peter R. Egli 2015
18/23

Rev. 1.90

OSGi service platform indigoo.com

8. OSGi specifications (3/5)

Chapters Description Core

Spec.

Compendium

Spec.

Enterprise

Spec.

Mobile

Spec.

110: Initial

provisioning

Allows to install management agents with a specific management

protocol for remote management of an OSGi service platform.
No Yes Yes No

111: UPnPTM device

service

a. Mapping of UPnP devices to the service registry.

b. Mapping of OSGi services to the UPnP network.
No Yes No No

112: Declarative

services

Allows defining service dependencies (import, export service) with an

XML-file instead of programmatically importing and exporting

services.

No Yes Yes Yes

113: Event admin

service

Publish – subscribe service for synchronous and asynchronous

events.
No Yes Yes Yes

114: Deployment

admin service

Allows managing of deployment packages = group of resources. Sets

of packages can be lifecycle-managed as a unit.
No Yes No Yes

115: Auto

configuration

Allows the definition of configuration resources that are packed into

a deployment package. The configuration resources are processed by

an Autoconf Resource Processor.

No Yes No Yes

116: Application

admin

Service to register application bundles and start these on demand.
No Yes No Yes

117: DMT admin

service

Device management tree service (abstract tree containing

management information).
No Yes No Yes

118: Mobile

conditions spec.

Defines conditions in mobile environments that can be used in

conjunction with the conditional permission admin service.
No No No Yes

119: Monitor admin

service

Standard performance monitoring for bundles.
No Yes No Yes

120: Foreign

application access

Service for deploying non-OSGi applications (e.g. Midlets) into OSGi.
No Yes No Yes

© Peter R. Egli 2015
19/23

Rev. 1.90

OSGi service platform indigoo.com

8. OSGi specifications (4/5)

Chapters Description Core

Spec.

Compendium

Spec.

Enterprise

Spec.

Mobile

Spec.

121: Blueprint

container

Dependency injection framework derived from the Spring Dynamic

Modules project.
No Yes Yes No

122: Remote service

admin

Administration of services in a distributed environment, i.e. which

services should be available in an OSGi-network.
No No Yes No

123: JTA service Transaction service based on JTA (Java Transaction API).
No No Yes No

124: JMXTM

management model

Provides a JMX-compliant OSGI-platform management interface to

connect OSGi to JMX-compliant implementation.

JMX: Java Management Extensions

No No Yes No

125: JDBC service Defines interfaces for JDBC drivers to connect an RDBMS to OSGi.
No No Yes No

126: JNDI service Defines how JNDI (Java Naming and Directory Interface) can be used

from within an OSGi platform. No No Yes No

127: JPA service Defines how persistent units can be published in an OSGi-platform

(ORM: Object Relational Mapping).
No No Yes No

128: Web

applications

Defines the web application bundle which performs the same

function as a WAR-file (Web ARchive) in JEE.
No No Yes No

129: SCA

configuration type

SCA: Service Configuration Architecture.

Defines a concrete configuration type for distributed OSGi

applications. SCA is based on JCA (Java Connector Architecture).

No No Yes No

RDBMS: Relational DataBase Management System

© Peter R. Egli 2015
20/23

Rev. 1.90

OSGi service platform indigoo.com

8. OSGi specifications (5/5)

Chapters Description Core

Spec.

Compendium

Spec.

Enterprise

Spec.

Mobile

Spec.

701: Tracker

specification

The OSGi platform is very dynamic and pinpointing problems may

thus be very difficult (e.g. race conditions).

Allows tracking of bundles and services for monitoring and

debugging purposes.

No Yes Yes Yes

702: XML parser

specification

Defines a common XML parser to be used by all services and bundles

in order to reduce memory requirements.
No Yes Yes Yes

703: Position

specification

Standard geographic location service.
No Yes No No

704: Measurement

and state

specification

Standard measurement class that handles issues like measurement

units conversion (e.g. [m][in]) in a consistent way . No Yes No No

999: Execution

environment

specification

Defines 2 execution environments:

a. JRE-based execution environment (server platform)

b. CDC (Connected Device Configuration, mobile device platform)

No Yes No No

© Peter R. Egli 2015
21/23

Rev. 1.90

OSGi service platform indigoo.com

9. When is OSGi applicable?
OSGi is generally suited for applications that:

a. need a dynamic environment (dynamic lifecycle).

b. consist of loosely coupled components, possibly from different vendors.

c. are based on the Java environment (OSGi may be extended to non-Java environments in the

future).

Target environments of OSGi:

Initially OSGi was targeted at mobile and home networking applications.

Later OSGi was adopted in the desktop market (RCP: Rich Client Platform of Eclipse).

OSGi is increasingly used in enterprise environments in distributed environments.

Where is OSGi employed (examples):

• Glassfish JEE application server (OSGi kernel as core of Glassfish)

• JOnAS JEE application server

• IBM WebSphere application server

• NetBeans IDE

• SIP communicator (Java VoIP and IM client)

• Eclipse 3.0 (OSGi = Eclipse runtime)

© Peter R. Egli 2015
22/23

Rev. 1.90

OSGi service platform indigoo.com

10. OSGi remote services (1/2)
Remote services for distributed applications:

OSGi remote services (available since OSGi 4.2, formerly known as Distributed OSGi) allows to

connect different OSGi framework runtimes (different OSGi JVMs) over a network.

Distributed OSGi is achieved through OSGi distribution providers, basically proxy objects that

connect service provider and consumer.

Single-JVM OSGi service model:

OSGi framework with service registry

Register

service

Provider

bundle

Consumer

bundle

Find

service

Call service

The OSGi framework and all bundles run in

one single JVM.

JVM runtime

© Peter R. Egli 2015
23/23

Rev. 1.90

OSGi service platform indigoo.com

OSGi framework with service registry

Register

service

Provider

bundle

Call service

Distribution

provider

OSGi framework with service registry

Find

service

Distribution

provider

Call service

Consumer

bundle

Various

communication

protocols like

JMS, WS, CORBA

Discovery

service

Publish

service

Discovery

service

Locate / find

service

Central service registry with

different service location protocols,

e.g. UDDI, SLP (Service Location Protocol), Zeroconf

10. OSGi remote services (2/2)
Distributed OSGi service model:

Criticism of OSGi remote services:

OSGi remote services extends the OSGi OOP (OO programming paradigm) to distributed

computing, thus implementing something similar to DCOM, CORBA, RMI, EJB.

JVM runtime JVM runtime

