
© Peter R. Egli 2015
1/19

Rev. 1.70

RMI – Remote Method Invocation indigoo.com

Peter R. Egli
INDIGOO.COM

INTRODUCTION TO RMI, A JAVA API FOR RPC-STYLE
INVOCATION OF REMOTE OBJECT METHODS

RMI
REMOTE METHOD INVOCATION

© Peter R. Egli 2015
2/19

Rev. 1.70

RMI – Remote Method Invocation indigoo.com

Contents
1. What is RMI?

2. Important RMI Components

3. RMI Layering

4. RMI Stub and Skeleton

5. RMI Registry

6. RMI Java Packages

7. RMI Transport Layer

8. RMI IDL

9. RMI Server Class Hierarchy

10. RMI Garbage Collection

11. RMI Dynamic Class Loading

12. RMI Parameter Passing

13. RMI Callbacks

14. RMI Remote Object Activation

© Peter R. Egli 2015
3/19

Rev. 1.70

RMI – Remote Method Invocation indigoo.com

1. What is RMI?
Remoting:

RMI is a lightweight Java technology that provides access to remote methods, similar to RPC,

but object-oriented. RMI basically provides remote object access for a client and object

registration for servers.

API and transport protocol:

RMI is both a Java API (java.rmi.* package) as well as a transport protocol definition for

transporting RMI calls through a network (JRMI, see below).

Java technology:

RMI is a Java technology since it requires that client and server objects run in a JVM. By using

IIOP as transport protocol, however, it is possible to connect RMI-clients to non-Java server

objects (CORBA, see below).

Client object Stub Server object Skeleton / stub Network

(TCP/IP)

IIOP: Internet Inter-ORB Protocol

© Peter R. Egli 2015
4/19

Rev. 1.70

RMI – Remote Method Invocation indigoo.com

2. Important RMI Components
Client:

The client looks up a remote object and calls methods on the obtained remote object.

Server:

The server registers itself in the RMI registry and accepts method invocations from the client.

RMI Registry:

The registry is a remote object lookup service. The registry may run on the same host as the

server or on a different host. The registry can also be a JNDI server.

Web Server:

A plain vanilla HTTP server may hold remote object classes for downloading by the client.

RMI Client RMI Server

RMI Registry

RMI (register an object)

RMI (remote

object call)

RMI (lookup an object)

Web Server
HTTP (code

download)

HTTP

© Peter R. Egli 2015
5/19

Rev. 1.70

RMI – Remote Method Invocation indigoo.com

3. RMI Layering
RMI has 3 layers on the client and server side.
Stub layer: Interface between client application (caller) and server object.

Remote reference layer: Connects clients to remote service objects.

Transport layer: Makes connections between client VM and server VM, formats the data using

 JRMP (Java Remote Method Protocol) or RMI-IIOP (Internet-Inter-ORB-

 Protocol, see CORBA).

Client object

Stub

Transport layer

Server object

Skeleton / stub

Transport layer

Network

(TCP/IP)

Remote reference

layer

Remote reference

layer

Interface between application

and RMI-system

Pass calls to the right remote

object

3 layers of

RMI system

Connect client and server VMs through

TCP (or UDP) connections using JRMP or

RMI-IIOP wire-protocol

© Peter R. Egli 2015
6/19

Rev. 1.70

RMI – Remote Method Invocation indigoo.com

4. RMI Stub and Skeleton
RMI uses the proxy design pattern for client and server stub / skeleton:

Client stub: Proxy object on the client for accessing the remote server object.

 The client stub intercepts the calls of the client and passes it to the

 remote reference layer.

Server stub/skeleton: The server stub receives calls from the remote reference layer and

 passes it to the server object implementing the interface

 (= RealSubject in the picture above).

<<Interface>>

Subject

+ request()

Proxy

+ request()

RealSubject

+ request()

<<implements>> <<implements>>

<<has>>

The proxy lives in the

client stub layer.

Object implementing the interface

and registered by the server

application with the RMI registry.

Both client and server stub implement

the same interface.

© Peter R. Egli 2015
7/19

Rev. 1.70

RMI – Remote Method Invocation indigoo.com

5. RMI Registry (1/2)
RMI registry function:

The RMI registry is a server registration and client lookup service.

It may run anywhere, i.e. does not need to be co-located with the RMI server object.

Default port for RMI registry: 1099 (may run on another port as well).

Server registration:

The servers register (export) objects that implement the service interface using bind() or

rebind():

Example: RemServer localObject = new RemServer();

 Naming.rebind("MyServ", localObject);

Client references:

Clients obtain references to server objects (= proxy objects) through the RMI registry using

a URL scheme (with an optional port):

URL: rmi://<host_name> [:<name_service_port>] /<service_name>
Example: RemIf remObject = (RemIf)Naming.lookup("rmi://" + host + "/MyServ");

© Peter R. Egli 2015
8/19

Rev. 1.70

RMI – Remote Method Invocation indigoo.com

5. RMI Registry (2/2)
RMI registry access to server stub classes:

The RMI registry needs to have access to the server‘s stub classes. This can be done in 2 ways

(strictly either-or, using both will not work!):

1. CLASSPATH:

Add the path to server stub class files to CLASSPATH when starting the RMI registry.

2. Codebase property:

Start the server with the codebase property. This way the server registers the remote object

along with the path to the class files.

The codebase property may be a file or HTTP URL.

N.B.: The codebase URL (file or HTTP) must contain a trailing slash / backslash as shown

below!

Example Windows file codebase property file path:
 java -Djava.rmi.server.codebase=file:/c:\RemServer\ -cp . RemServer

Example Unix codebase property file path:
 java -Djava.rmi.server.codebase=file:/usr/RemServer/ -cp . RemServer

Example Windows and Unix codebase property HTTP path:
 java -Djava.rmi.server.codebase=http://www.hsz-t.ch/~pegli/RemServer/ -cp . RemServer

© Peter R. Egli 2015
9/19

Rev. 1.70

RMI – Remote Method Invocation indigoo.com

6. RMI Java Packages
Online RMI javadoc: https://docs.oracle.com/javase/7/docs/api/

Package Description

java.rmi.*
Core RMI package with classes and interfaces used by both client and
server. Contains interface Remote, classes Naming and

RMISecurityManager and some basic exception classes.

java.rmi.activation.*
Classes and interfaces for dynamic activation of remote objects together

with RMI daemon (rmid). More information on dynamic invocation see

below.

java.rmi.dgc.* Classes and interfaces for distributed garbage collection (DGC).

java.rmi.registry.*
Registry and LocateRegistry classes for directly interacting with a

(remote or local) registry. Registry class provides lookup(), rebind(),

list() and other methods.

java.rmi.server.*
Classes for use on the server side like class loader (RMIClassLoader) and

UnicastRemoteObject (base class for remote objects).

javax.rmi.* APIs for RMI-IIOP (interoperability between RMI and CORBA).

https://docs.oracle.com/javase/7/docs/api/

© Peter R. Egli 2015
10/19

Rev. 1.70

RMI – Remote Method Invocation indigoo.com

7. RMI Transport Layer (1/2)
RMI allows using different wire-protocols for encoding and transporting the object requests.

Wire protocol = protocol for encoding data (objects) on the „wire“ (network).

The RMI transport layer uses stream-based TCP/IP connections only (point-to-point

connections, no multicast).

a. JRMP (Java RMI Method Protocol):

JRMP is the default wire-protocol for RMI.

N.B.: In addition to the connection setup packet exchange, the RMI protocol adds additional

overhead. Thus RMI is not suited for use on non-LAN type networks.

Client Server
TCP SYN

TCP SYN, ACK

TCP ACK
TCP 3-way handshake for connection setup.

JRMI version

JRMI protocol ack

RMI call (serialized object data)

Client and server agree on the RMI protocol and version

to use.

RMI return (with serialized object data) Actual RMI remote method call.

DgcAck Client indicates to the server that the response has been

received (signal to the distributed garbage collector to

reclaim the server-side response object).
Connection teardown (3 or 4 packets)

TCP connection teardown.

© Peter R. Egli 2015
11/19

Rev. 1.70

RMI – Remote Method Invocation indigoo.com

7. RMI Transport Layer (2/2)
b. HTTP:

JRMP dynamically opens TCP connections. Firewalls may block such connections.

HTTP as wire-protocol is better suited to get through firewalls (tunneling of RMI calls through

an HTTP connection).

When the client fails to open a JRMP connection to the server, it automatically falls back to

HTTP tunneling by encapsulating the request in an HTTP POST request.

c. RMI-IIIOP (Internet Inter-ORB Protocol):

When using RMI-IIOP, RMI becomes interoperable with CORBA (an RMI client may call a CORBA

object).

For further information see https://docs.oracle.com/javase/1.5.0/docs/guide/rmi-

iiop/rmi_iiop_pg.html.

Client RMI registry

Server object

Lookup connection

Service connection

https://docs.oracle.com/javase/1.5.0/docs/guide/rmi-iiop/rmi_iiop_pg.html
https://docs.oracle.com/javase/1.5.0/docs/guide/rmi-iiop/rmi_iiop_pg.html
https://docs.oracle.com/javase/1.5.0/docs/guide/rmi-iiop/rmi_iiop_pg.html

© Peter R. Egli 2015
12/19

Rev. 1.70

RMI – Remote Method Invocation indigoo.com

8. RMI IDL
RMI does not have a specific syntax for the description of the interface (IDL-file) but rather

uses a compiled Java class as IDL (Java is the IDL).

Important rmic options (output of rmic help on command line):

RMI compiler

(rmic.exe)

RemServer.class RemServer_Stub.class

Class file contains

the RMI stub

Java compiler

(javac.exe)

RemServer.java

-v1.1 Create stubs/skeletons for 1.1 stub protocol version.
-vcompat Create stubs/skeletons compatible with both
 1.1 and 1.2 stub protocol versions.
-v1.2 (default) Create stubs for 1.2 stub protocol version only
-iiop Create stubs for IIOP. When present, <options> also includes:
 -always Create stubs even when they appear current
 -alwaysgenerate (same as "-always")
 -nolocalstubs Do not create stubs optimized for same process
-idl Create IDL. When present, <options> also includes:
 -noValueMethods Do not generate methods for valuetypes
 -always Create IDL even when it appears current
 -alwaysgenerate (same as "-always")
-classpath <path> Specify where to find input class files
-bootclasspath <path> Override location of bootstrap class files
-extdirs <path> Override location of installed extensions
-d <directory> Specify where to place generated class files
-J<runtime flag> Pass argument to the java interpreter

© Peter R. Egli 2015
13/19

Rev. 1.70

RMI – Remote Method Invocation indigoo.com

9. RMI Server Class Hierarchy
A remote (server) object must implement the contracted interface (RemIf) which in turn

must extend the base interface Remote.

A remote (server) object must extend the class UnicastRemoteObject (adds serializability

among other things).

RemIf

RemServer

Remote

UnicastRemoteObject

 Serializable

User defined remote object (class)

User defined interface

© Peter R. Egli 2015
14/19

Rev. 1.70

RMI – Remote Method Invocation indigoo.com

10. RMI Garbage Collection
RMI runs DGC (Distributed Garbage Collection) which frees unused server objects once no

client holds a live reference anymore (reference counting algorithm).

Garbage collection is hidden to client and server, very much like local GC is hidden to

Java applications.

A server may optionally implement the Unreferenced interface to be notified about an

impending object removal (a kind of destructor call). RMI calls the method unreferenced()

before the object is removed.

RemIf

RemServer

Remote

UnicastRemoteObject

 Serializable

Unreferenced

+ unreferenced()

© Peter R. Egli 2015
15/19

Rev. 1.70

RMI – Remote Method Invocation indigoo.com

11. RMI Dynamic Class Loading (1/2)
For ease of deployment, stub files can be downloaded on request by the client instead of

distributing them manually to each client.

The code (stub class files) can be made available for download on a web server.

N.B.: The interface file (class file containing the compiled remote interface) is still required

both on the client and server side (otherwise client and server will not compile).

RMI Client RMI Server

RMI Registry

RMI (register an object)

RMI (remote

object call)

RMI (lookup an object)

Web Server
HTTP (code

download)

© Peter R. Egli 2015
16/19

Rev. 1.70

RMI – Remote Method Invocation indigoo.com

11. RMI Dynamic Class Loading (2/2)
Both client and server need to install a security manager to be able to load classes remotely:
System.setSecurityManager(new RMISecurityManger());

Client and server need a security policy file granting the necessary rights like opening network

connections (the following security policy file simply grants everything = no security at all):

mysecurity.policy file:
grant {
 permission java.security.AllPermission;
}

Starting the server with the security policy file (note the trailing backslash in the codebase

path):

java –Djava.rmi.server.codebase="http://myserver/foo/"
 –Djava.security.policy=mysecurity.policy MyServer

Starting the client with the security policy file:

java –Djava.security.policy=mysecurity.policy MyClient

© Peter R. Egli 2015
17/19

Rev. 1.70

RMI – Remote Method Invocation indigoo.com

12. RMI Parameter Passing
RMI provides the same object and method call semantics as for local objects.

But: Arguments to method calls must be serializable, i.e. implement the Serializable interface.

Serialization (recursively) „flattens“ objects into a byte-stream, i.e. object attributes that

are in turn objects are serialized as well (serialization of a tree of object references).

Types that are not serializable:
• Any object that does not implement Serializable.

• Any object that would pose a security risk (e.g. FileInputStream).

• Any object whose value depends on VM-specific information (e.g. Thread).

• Any object that contains a (non-static, non-transient) unserializable object (recursively).

 Serializable

MyArgument

Contained in java.io.serializable package

© Peter R. Egli 2015
18/19

Rev. 1.70

RMI – Remote Method Invocation indigoo.com

13. RMI Callbacks
In certain situations it may be desirable to make calls from the server to the client, e.g. for

giving progress feedback, warnings or errors etc.

There are 2 ways to make the client callable by the server:

 1. Client is an RMI server as well (extends UnicastRemoteObject).

 2. Client makes itself callable through exportObject.

 Instead of extending UnicastRemoteObject, the client exports itself as an RMI server:
 UnicastRemoteObject.exportObject(this);

More details see

https://docs.oracle.com/cd/E13211_01/wle/rmi/callbak.htm

 TimeMonitor
+ tellMeTheTime()

TimeClient

Remote

 TimeServer
+ registerMonitor

TimeServer

Remote
In this example, the server provides

an interface for a client to register

itself for time updates (registerMonitor()).

The client needs to export itself through

UnicastRemoteObject.exportObject().

https://docs.oracle.com/cd/E13211_01/wle/rmi/callbak.htm

© Peter R. Egli 2015
19/19

Rev. 1.70

RMI – Remote Method Invocation indigoo.com

14. RMI Remote Object Activation
Server objects extending UnicastRemoteObject and registered with the RMI registry run

permanently.

This may be undesirable when there are a large number of objects (resource usage in terms

of memory and TCP connections).

RMI provides an alternative through dynamically activatable objects:

Activatable (dynamically instantiatable objects) are registered with rmid (RMI daemon) instead

of the rmiregistry daemon (see $JAVA_HOME/bin/rmid.exe).

See also https://docs.oracle.com/javase/7/docs/technotes/guides/rmi/activation/overview.html.

RemIf

RemServer

Remote

Activatable

 Serializable

https://docs.oracle.com/javase/7/docs/technotes/guides/rmi/activation/overview.html

