
© Peter R. Egli 2015
1/20

Rev. 2.00

SUN / ONC RPC (Remote Procedure Call) indigoo.com

Peter R. Egli
INDIGOO.COM

OVERVIEW OF ONC RPC, AN
RPC TECHNOLOGY FOR UNIX BASED SYSTEMS

ONC RPC
OPEN NETWORK COMPUTING

REMOTE PROCEDURE CALL

© Peter R. Egli 2015
2/20

Rev. 2.00

SUN / ONC RPC (Remote Procedure Call) indigoo.com

Contents
1. What is RPC?

2. Local versus remote procedure call

3. RPC service daemon on the remote machine (portmapper)

4. RPC system components

5. RPC parameter passing

6. Network transport protocol for RPC

7. RPC interface description and code generation

8. RPC procedure call semantics

9. RPC remote procedure location and discovery

10. RPC interaction

© Peter R. Egli 2015
3/20

Rev. 2.00

SUN / ONC RPC (Remote Procedure Call) indigoo.com

1. What is RPC?
RPC is an extension of conventional procedure calls:

 RPC allows a client application to call procedures in a different address space on the same or

on a remote machine (= transfer of control and data to a different address space and process).

RPC as middleware for traditional client – server programming:

RPC extends sockets with remote procedure call semantics. RPC allows an application to call

a remote procedure just as it were a local procedure (location transparency).

Different flavors of RPC:

1. SUN-RPC (= ONC RPC):

ONC RPC = Open Network Computing RPC. Initially developed by Sun Microsystems.

First widely adopted RPC implementation.

Standards: RFC4506 XDR (Data presentation), RFC1057 RPC protocol specification.

2. DCE/RPC:

Distributed Computing Environment RPC by OSF (Open Software Foundation).

Not widely adopted by the IT industry.

3. MS RPC:

Microsoft’s extension of DCE/RPC.

http://www.rfc-editor.org/rfc/rfc4506.txt
http://www.rfc-editor.org/rfc/rfc1057.txt

© Peter R. Egli 2015
4/20

Rev. 2.00

SUN / ONC RPC (Remote Procedure Call) indigoo.com

2. Local versus remote procedure call
Local procedure call:

Remote procedure call:

Client:

Calling

procedure

Server:

Called

procedure

Arguments

Results

The calling procedure executes the

called procedure in its own address

space and process.

Client:

Calling

procedure

Server:

Called

procedure

Client stub Server stub

Network

(TCP/IP)

Request

message

Request

message

Reply

message

Reply

message

Results

Client and server run as 2 separate processes

(on the same or on different machines).

Results Call with

arguments

Call with

arguments

Stubs allow communication between client and

server. These stubs map the local procedure call

to a series of network RPC function calls.

© Peter R. Egli 2015
5/20

Rev. 2.00

SUN / ONC RPC (Remote Procedure Call) indigoo.com

3. RPC service daemon on the remote machine (portmapper)
How is the remote procedure called?

The remote procedure request message is received by a process (service daemon called

portmapper). The daemon dispatches the call to the appropriate server stub.

The service daemon listens on incoming requests.

callrpc() with

request

Dispatch service

procedure

Execute

procedure

Assemble reply
return() reply

Client is

blocked

Client
Service

daemon

Server

procedure

© Peter R. Egli 2015
6/20

Rev. 2.00

SUN / ONC RPC (Remote Procedure Call) indigoo.com

4. RPC system components
Main RPC components:

The client stub is a proxy object that passes calls to the server stub. The message modules

pack and unpack the marshaled arguments in UDP packets.

Client:

Calling

procedure

Server:

Called

procedure

Client stub Server stub

Network

(TCP/IP)

Request

message

Request

message

Reply

message

Reply

message

Results Results

Message module
Portmapper with

Message module

Results Results

Client stub: Pack arguments (marshal)

Server Stub: Unpack arguments (unmarshal)

Message modules: Send & receive RPC messages.

The portmapper runs as a daemon process (listener

process).

Server daemon

Call with

arguments

Call with

arguments

Call with

arguments

Call with

arguments

© Peter R. Egli 2015
7/20

Rev. 2.00

SUN / ONC RPC (Remote Procedure Call) indigoo.com

5. RPC parameter passing (1/2)
Local procedures:

The call of a local procedure allows pass-by-value and pass-by-reference.

Call by value example (plain old C):
int sqrt(int arg0)

{

 return arg0 * arg0;

}

...

int number = 9;

int result;

result = sqrt(number);

Call-by-reference example (plain old C):
struct Arguments {

 int number0;

 int number1;

} args;

struct Arguments args;

...

int product(Arguments* args)

{

 return args->number0 * args->number1;

}

...

int result = product(&args);

© Peter R. Egli 2015
8/20

Rev. 2.00

SUN / ONC RPC (Remote Procedure Call) indigoo.com

5. RPC parameter passing (2/2)
Remote procedures / RPC:

RPC only allows pass-by-value because pointers are meaningless in the address space of the

remote process.

XDR (the RPC Interface Description Language, see below) allows declaring pointers to data

structures. But RPC does actually copy-in/copy-out parameter passing (passes full copies of

referenced data structures to the remote procedure).

Example:

XDR file with pointer argument:
/* msg.x: Remote msg printing protocol */

 struct PrintArgs {

 char* name;

 int number;

 };

program MSGPROG {

 version PRINTMSGVERS {

 int PRINTMSG(PrintArgs*) = 1;

 } = 1;

} = 0x20000001;

Client application:
struct PrintArgs printArgs;

int* result;

result = printmsg_1(&printArgs, clnt);

© Peter R. Egli 2015
9/20

Rev. 2.00

SUN / ONC RPC (Remote Procedure Call) indigoo.com

6. Network transport protocol for RPC
RPC uses the underlying network just as any other network application.

RPC may use connection oriented (TCP, SCTP) or connectionless transport protocols (UDP).

Usually RPC uses UDP because UDP (connectionless transport service) better supports the

RPC protocol because:

1. RPC interactions are generally short so connections are not really required.

2. Servers generally serve a large number of clients and maintaining state information on

connections means additional overhead for the server.

3. LANs are generally reliable so the reliable service of TCP is not needed.

Client:

Calling

procedure

Client stub

result = printmsg_1(&printArgs, clnt);

Message module

Socket

UDP

IP

Marshal parameters

Request packet

Create request message

RPC Request message

R

R+H

IP U R+H

Server:

Called

procedure

Server stub

Message module

Socket

UDP

IP

R

R+H

© Peter R. Egli 2015
10/20

Rev. 2.00

SUN / ONC RPC (Remote Procedure Call) indigoo.com

Program number

Procedure declaration (procedure number 1)

Version of (remote) program (=1 in the example)

Name of the (remote) program

7. RPC interface description and code generation (1/2)
Interface definition:

The server procedure(s) are defined as an interface in a formal language (XDR) and then

compiled to source code (plain old C).

Elements of XDR (External Data Representation):

1. Interface definition language (IDL).

 XDR defines procedure signatures (procedure names, parameters with types) and

 user defined types.

2. Data encoding standard (how to encode data for transmission over the network).

 XDR defines how to pack simple types like int and string into a byte stream.

Example XDR file:
/* msg.x: Remote msg printing protocol */

program MESSAGEPROG

{

 version PRINTMESSAGEVERS

 {

 int PRINTMESSAGE(string) = 1;

 } = 1;

} = 0x20000001;

© Peter R. Egli 2015
11/20

Rev. 2.00

SUN / ONC RPC (Remote Procedure Call) indigoo.com

7. RPC interface description and code generation (2/2)
Code generation from XDR file:

The RPC compiler (ONC RPC: rpcgen) generates all the necessary C source files from the XDR

interface specification file (header files, stubs).

XDR

file

RPC

compiler

C

compiler +

linker

Client

appl.

Client

stub

Server

proc.

Server

stub

Client

executable

C

compiler +

linker

Server

executable

rpcgen

Shared

header

files

© Peter R. Egli 2015
12/20

Rev. 2.00

SUN / ONC RPC (Remote Procedure Call) indigoo.com

8. RPC procedure call semantics (1/4)
Potential problems with RPC calls:

a. The request message may be lost (in the network, in the message module).

b. The reply message may be lost.

c. The server or client may crash during an RPC call.

In these cases, it is not clear to the client if the remote procedure has been called or not.

RPC incorporates different strategies for handling these situations.

Client:

Calling

procedure

Server:

Called

procedure

Client stub Server stub

Network

(UDP/IP)

Message module Message module

R

R

© Peter R. Egli 2015
13/20

Rev. 2.00

SUN / ONC RPC (Remote Procedure Call) indigoo.com

8. RPC procedure call semantics (2/4)
RPC message delivery strategies:

1. Retry request message:

The client retransmits the request message until either a reply is received or the server is

assumed to have failed (timeout).

2. Duplicate filtering:

The server filters out duplicate request messages when retransmissions are used.

3. Retransmission of replies:

The server maintains a history of reply messages.

In case of a lost reply message, the server retransmit the reply without re-executing the server

operation.

© Peter R. Egli 2015
14/20

Rev. 2.00

SUN / ONC RPC (Remote Procedure Call) indigoo.com

8. RPC procedure call semantics (3/4)
RPC supports 3 different “call semantics” that define the level of guarantee of requests:

1. maybe call semantics.

2. at-least-once call semantics.

3. at-most-once call semantics.

RPC mechanisms usually include timeouts to prevent clients waiting indefinitely for reply

messages.

1. maybe call semantics:

• No retransmission of request messages.

• Client is not certain whether the procedure has been executed or not.

• No fault-tolerance measures (RPC call may or may not be successful).

• Generally not acceptable (low level of guarantee).

2. at-least-once call semantics:

• The message module repeatedly resends request messages after timeouts occur until it

either gets a reply message or a maximum number of retries have been made.

• No duplicate request message filtering.

• The remote procedure is called at least once if the server is not down.

• The client does not know how many times the remote procedure has been called. This could

produce undesirable results (e.g., money transfer) unless the called procedure is

“idempotent” (= repeatable with the same effect as a single call).

© Peter R. Egli 2015
15/20

Rev. 2.00

SUN / ONC RPC (Remote Procedure Call) indigoo.com

8. RPC procedure call semantics (4/4)
3. at-most-once call semantics:

• Retransmission of request messages.

• Duplicate request message filtering.

• If the server does not crash and the client receives the result of a call, then the procedure

has been called exactly once. Otherwise, an exception is reported and the procedure will

have been called either once or not at all.

• Works for both idempotent and non-idempotent operations.

• More complex support required due to the need for request message filtering and for

keeping track of replies.

Comparison of call semantics:

Delivery guarantees

RPC call semantics Retry request

message

Duplicate filtering Re-execute

procedure or

retransmit reply

Maybe No Not applicable Not applicable

At-least-once Yes No Re-execute

procedure

At-most-once Yes Yes Retransmit reply

© Peter R. Egli 2015
16/20

Rev. 2.00

SUN / ONC RPC (Remote Procedure Call) indigoo.com

9. RPC remote procedure location and discovery (1/2)
How does the client find the IP address and port of the host hosting the remote procedure?

In RPC, binding refers to determining the location and identity of the called procedure.

The binder (RPCBIND, formerly portmapper) is a daemon that:

- is a registry for registering server procedures on the server,

- is a lookup service for the client to get the address of the server procedure host,

- runs on the host and listens on a well-known address (port number 111).

Client
Client

stub
Binder

Message

module

RPC

 call

bind

LookUp

LookUp response

Message

module

Server

stub
Server

Register procedure

ACK

send
RPC request

call

RPC response

return

Host Client

© Peter R. Egli 2015
17/20

Rev. 2.00

SUN / ONC RPC (Remote Procedure Call) indigoo.com

9. RPC remote procedure location and discovery (2/2)
Static versus dynamic binding:

Static binding:

• Binds the host address of a server into the client program at compilation time.

• Undesirable because the client and server programs are compiled separately and often at

different times and the server may be moved from one host to another.

Dynamic binding:

• Dynamic lookup of the server address (see previous slide).

• Allows servers to register and remove their exporting services.

• Allows clients to lookup the named service.

Binding API:
PROCEDURE Register (serviceName:String; serverPort:Port; version:integer)

Binder records the service name and server port of a service in its table, together with a

version number.

PROCEDURE Withdraw (serviceName:String; serverPort:Port; version:integer)

Binder removes the service from its table.

PROCEDURE LookUp (serviceName:String; version:integer): Port

The binder looks up the named service and returns its address (or set of addresses) if the

version number agrees with the one stored in its table.

© Peter R. Egli 2015
18/20

Rev. 2.00

SUN / ONC RPC (Remote Procedure Call) indigoo.com

10. RPC interaction (1/3)
RPC allows synchronous and asynchronous interaction.

Synchronous RPC:

In synchronous RPC, the client is blocked until it received the server reply.

Synchronous RPC is the default mode of interaction.

 Easier to program (no synchronization required on client).

 Client is blocked during the entire RPC operation (waste of execution time, performance

negatively affected).

 Client
Server

procedure

callrpc() with

request

Execute

procedure

return() reply

Client is

blocked

© Peter R. Egli 2015
19/20

Rev. 2.00

SUN / ONC RPC (Remote Procedure Call) indigoo.com

10. RPC interaction (2/3)
Asynchronous RPC:

If a remote procedure does not require a response, the client can send a request to the server

without waiting for a reply and continue with its work.

 The client is not blocked, can continue with its work.

 Only possible for remote procedures that do not return a result (e.g. send a log message to a

log server).

Client
Server

procedure

callrpc() with

request

Server executes the

request asynchronously

return()

Client continues

with its work

© Peter R. Egli 2015
20/20

Rev. 2.00

SUN / ONC RPC (Remote Procedure Call) indigoo.com

10. RPC interaction (3/3)
Deferred synchronous RPC:

With deferred synchronous RPC, the client sends a request to the server and only waits for the

acceptance of the request. The server executes the request and sends an answer back to the

client.

This mode is useful in cases where the server procedure requires lengthy computations.

 Client not blocked, can continue with its work.

 More complicated synchronization required on the client.

Client
Server

procedure

callrpc() with

request

Server executes the

request asynchronously

Accept request
Client waits for

acceptance of

request and

then continues

with its work

Return result(s) Client is

interrupted,

processes the

result

ACK

Each pair of call and reply

message is matched by a

transaction ID (XID field).

